Cargando…
Continuous Evaluation of Denoising Strategies in Resting-State fMRI Connectivity Using fMRIPrep and Nilearn
Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropria...
Autores principales: | Wang, Hao-Ting, Meisler, Steven L, Sharmarke, Hanad, Clarke, Natasha, Gensollen, Nicolas, Markiewicz, Christopher J, Paugam, Fraçois, Thirion, Bertrand, Bellec, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153168/ https://www.ncbi.nlm.nih.gov/pubmed/37131781 http://dx.doi.org/10.1101/2023.04.18.537240 |
Ejemplares similares
-
Quality control in functional MRI studies with MRIQC and fMRIPrep
por: Provins, Céline, et al.
Publicado: (2023) -
A dataset of long-term consistency values of resting-state fMRI connectivity maps in a single individual derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol
por: Badhwar, AmanPreet, et al.
Publicado: (2020) -
FMRIPrep: a robust preprocessing pipeline for functional MRI
por: Esteban, Oscar, et al.
Publicado: (2018) -
Advancing motion denoising of multiband resting-state functional connectivity fMRI data
por: Williams, John C., et al.
Publicado: (2022) -
Potential pitfalls when denoising resting state fMRI data using nuisance regression
por: Bright, Molly G., et al.
Publicado: (2017)