Cargando…
Machine learning traction force maps of cell monolayers
Cellular force transmission across a hierarchy of molecular switchers is central to mechanobiological responses. However, current cellular force microscopies suffer from low throughput and resolution. Here we introduce and train a generative adversarial network (GAN) to paint out traction force maps...
Autores principales: | Li, Changhao, Feng, Luyi, Park, Yang Jeong, Yang, Jian, Li, Ju, Zhang, Sulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153286/ https://www.ncbi.nlm.nih.gov/pubmed/37131887 |
Ejemplares similares
-
pyTFM: A tool for traction force and monolayer stress microscopy
por: Bauer, Andreas, et al.
Publicado: (2021) -
Physical forces guide curvature sensing and cell migration mode bifurcating
por: Feng, Luyi, et al.
Publicado: (2023) -
Traction force microscopy by deep learning
por: Wang, Yu-li, et al.
Publicado: (2021) -
Traction force microscopy for understanding cellular mechanotransduction
por: Hur, Sung Sik, et al.
Publicado: (2020) -
Dynamic response of the cell traction force to osmotic shock
por: Liu, Yongman, et al.
Publicado: (2023)