Cargando…
Unsupervised machine learning models reveal predictive markers of glioblastoma patient survival using white blood cell counts prior to initiating chemoradiation
PURPOSE: Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary management. Personalized medicine has suggested use of various molecular biomarkers as predictors of patient prognosis or factors utilized for clinical decision making. However, the accessibilit...
Autores principales: | Wang, Wesley, Kumm, Zeynep Temerit, Ho, Cindy, Zanesco-Fontes, Ideli, Texiera, Gustavo, Reis, Rui Manuel, Martinetto, Horacio, Khan, Javaria, Anderson, Mark D., Chohan, M Omar, Beyer, Sasha, Elder, J Brad, Giglio, Pierre, Otero, José Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153371/ https://www.ncbi.nlm.nih.gov/pubmed/37131745 http://dx.doi.org/10.21203/rs.3.rs-2834239/v1 |
Ejemplares similares
-
Automatic Passenger Counting on the Edge via Unsupervised Clustering
por: Delzanno, Giorgio, et al.
Publicado: (2023) -
Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences
por: Wang, Wesley, et al.
Publicado: (2023) -
Elevated Baseline Neutrophil Count Correlates with Worse Outcomes in Patients with Muscle-Invasive Bladder Cancer Treated with Chemoradiation
por: Meunier, Sébastien, et al.
Publicado: (2023) -
Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
por: Pontin, Francesca, et al.
Publicado: (2021) -
Concurrent Chemoradiation for Vaginal Cancer
por: Miyamoto, David T., et al.
Publicado: (2013)