Cargando…
Preservation of thalamocortical circuitry is essential for good recovery after cardiac arrest
Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153639/ https://www.ncbi.nlm.nih.gov/pubmed/37143862 http://dx.doi.org/10.1093/pnasnexus/pgad119 |
Sumario: | Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy. This biophysical model includes intracortical, intrathalamic, and corticothalamic synaptic strengths, as well as synaptic time constants and axonal conduction delays. We used continuous EEG measurements from hundred comatose patients recorded during the first 48 h postcardiac arrest, 50 with a poor neurological outcome [cerebral performance category [Formula: see text]] and 50 with a good neurological outcome ([Formula: see text]). We only included patients that developed (dis-)continuous EEG activity within 48 h postcardiac arrest. For patients with a good outcome, we observed an initial relative excitation in the corticothalamic loop and corticothalamic propagation that subsequently evolved towards values observed in healthy controls. For patients with a poor outcome, we observed an initial increase in the cortical excitation-inhibition ratio, increased relative inhibition in the corticothalamic loop, delayed corticothalamic propagation of neuronal activity, and severely prolonged synaptic time constants that did not return to physiological values. We conclude that the abnormal EEG evolution in patients with a poor neurological recovery after cardiac arrest may result from persistent and selective synaptic failure that includes corticothalamic circuitry and also delayed corticothalamic propagation. |
---|