Cargando…

A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region

Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Bove, Samantha, Fanizzi, Annarita, Fadda, Federico, Comes, Maria Colomba, Catino, Annamaria, Cirillo, Angelo, Cristofaro, Cristian, Montrone, Michele, Nardone, Annalisa, Pizzutilo, Pamela, Tufaro, Antonio, Galetta, Domenico, Massafra, Raffaella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153708/
https://www.ncbi.nlm.nih.gov/pubmed/37130116
http://dx.doi.org/10.1371/journal.pone.0285188
_version_ 1785035974721404928
author Bove, Samantha
Fanizzi, Annarita
Fadda, Federico
Comes, Maria Colomba
Catino, Annamaria
Cirillo, Angelo
Cristofaro, Cristian
Montrone, Michele
Nardone, Annalisa
Pizzutilo, Pamela
Tufaro, Antonio
Galetta, Domenico
Massafra, Raffaella
author_facet Bove, Samantha
Fanizzi, Annarita
Fadda, Federico
Comes, Maria Colomba
Catino, Annamaria
Cirillo, Angelo
Cristofaro, Cristian
Montrone, Michele
Nardone, Annalisa
Pizzutilo, Pamela
Tufaro, Antonio
Galetta, Domenico
Massafra, Raffaella
author_sort Bove, Samantha
collection PubMed
description Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.
format Online
Article
Text
id pubmed-10153708
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-101537082023-05-03 A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region Bove, Samantha Fanizzi, Annarita Fadda, Federico Comes, Maria Colomba Catino, Annamaria Cirillo, Angelo Cristofaro, Cristian Montrone, Michele Nardone, Annalisa Pizzutilo, Pamela Tufaro, Antonio Galetta, Domenico Massafra, Raffaella PLoS One Research Article Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients. Public Library of Science 2023-05-02 /pmc/articles/PMC10153708/ /pubmed/37130116 http://dx.doi.org/10.1371/journal.pone.0285188 Text en © 2023 Bove et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bove, Samantha
Fanizzi, Annarita
Fadda, Federico
Comes, Maria Colomba
Catino, Annamaria
Cirillo, Angelo
Cristofaro, Cristian
Montrone, Michele
Nardone, Annalisa
Pizzutilo, Pamela
Tufaro, Antonio
Galetta, Domenico
Massafra, Raffaella
A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title_full A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title_fullStr A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title_full_unstemmed A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title_short A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
title_sort ct-based transfer learning approach to predict nsclc recurrence: the added-value of peritumoral region
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153708/
https://www.ncbi.nlm.nih.gov/pubmed/37130116
http://dx.doi.org/10.1371/journal.pone.0285188
work_keys_str_mv AT bovesamantha actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT fanizziannarita actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT faddafederico actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT comesmariacolomba actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT catinoannamaria actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT cirilloangelo actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT cristofarocristian actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT montronemichele actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT nardoneannalisa actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT pizzutilopamela actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT tufaroantonio actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT galettadomenico actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT massafraraffaella actbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT bovesamantha ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT fanizziannarita ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT faddafederico ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT comesmariacolomba ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT catinoannamaria ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT cirilloangelo ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT cristofarocristian ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT montronemichele ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT nardoneannalisa ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT pizzutilopamela ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT tufaroantonio ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT galettadomenico ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion
AT massafraraffaella ctbasedtransferlearningapproachtopredictnsclcrecurrencetheaddedvalueofperitumoralregion