Cargando…
A framework for materials informatics education through workshops
ABSTRACT: The burgeoning field of materials informatics necessitates a focus on educating the next generation of materials scientists in the concepts of data science, artificial intelligence (AI), and machine learning (ML). In addition to incorporating these topics in undergraduate and graduate curr...
Autores principales: | Mannodi-Kanakkithodi, Arun, McDannald, Austin, Sun, Shijing, Desai, Saaketh, Brown, Keith A., Kusne, A. Gilad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153775/ https://www.ncbi.nlm.nih.gov/pubmed/37361859 http://dx.doi.org/10.1557/s43577-023-00531-6 |
Ejemplares similares
-
Universal machine learning framework for defect predictions in zinc blende semiconductors
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2022) -
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2016) -
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016) -
Brainstem networks construct threat probability and prediction error from neuronal building blocks
por: Strickland, Jasmin A., et al.
Publicado: (2022) -
Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output
por: Wright, Kristina M, et al.
Publicado: (2019)