Cargando…
CovidRhythm: A Deep Learning Model for Passive Prediction of Covid-19 Using Biobehavioral Rhythms Derived From Wearable Physiological Data
Goal: To investigate whether a deep learning model can detect Covid-19 from disruptions in the human body's physiological (heart rate) and rest-activity rhythms (rhythmic dysregulation) caused by the SARS-CoV-2 virus. Methods: We propose CovidRhythm, a novel Gated Recurrent Unit (GRU) Network w...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154002/ https://www.ncbi.nlm.nih.gov/pubmed/37143920 http://dx.doi.org/10.1109/OJEMB.2023.3261223 |
Ejemplares similares
-
Multi-task deep learning for cardiac rhythm detection in wearable devices
por: Torres-Soto, Jessica, et al.
Publicado: (2020) -
Predicting sex from brain rhythms with deep learning
por: van Putten, Michel J. A. M., et al.
Publicado: (2018) -
Editorial: Wearable Devices for Cardiac Rhythm Monitoring
por: Duncker, David, et al.
Publicado: (2022) -
Circadian Rhythm Analysis Using Wearable Device Data: Novel Penalized Machine Learning Approach
por: Li, Xinyue, et al.
Publicado: (2021) -
What time is it? Deep learning approaches for circadian rhythms
por: Agostinelli, Forest, et al.
Publicado: (2016)