Cargando…

Is There a Relationship Between Mating and Pathogenesis in Two Human Fungal Pathogens, Candida albicans and Candida glabrata?

PURPOSE OF REVIEW: Human fungal pathogens are rapidly increasing in incidence and readily able to evade the host immune responses. Our ability to study the genetic behind this has been limited due to the apparent lack of a sexual cycle and forward genetic tools. In this review, we discuss the evolut...

Descripción completa

Detalles Bibliográficos
Autores principales: Bedekovic, Tina, Usher, Jane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154270/
https://www.ncbi.nlm.nih.gov/pubmed/37151577
http://dx.doi.org/10.1007/s40588-023-00192-8
Descripción
Sumario:PURPOSE OF REVIEW: Human fungal pathogens are rapidly increasing in incidence and readily able to evade the host immune responses. Our ability to study the genetic behind this has been limited due to the apparent lack of a sexual cycle and forward genetic tools. In this review, we discuss the evolution of mating, meiosis, and pathogenesis and if these processes are advantageous to pathogens. RECENT FINDINGS: This review summarises what is currently known about the sexual cycles of two important human fungal pathogens, Candida albicans and Candida glabrata. This includes the identification of parasexual cycle in C. albicans and the observed low levels of recombination in C. glabrata populations. SUMMARY: In this review, we present what is currently known about the mating types and mating/sexual cycles of two clinically important human fungal pathogens, Candida albicans and Candida glabrata. We discuss the evolution of meiosis using the knowledge that has been amassed from the decades of studying Saccharomyces cerevisiae and how this can be applied to fungal pathogens. We further discuss how the evolution of pathogenesis has played a role in influencing mating processes in human fungal pathogens and compare sexual cycles between C. albicans and C. glabrata, highlighting knowledge gaps and suggesting how these two fungi have evolved distinct mating niches to allow the development of disease in a human host.