Cargando…
Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154313/ https://www.ncbi.nlm.nih.gov/pubmed/37130899 http://dx.doi.org/10.1038/s41526-023-00281-4 |
_version_ | 1785036101547720704 |
---|---|
author | Mohr, M. Dong, Y. Bracker, G. P. Hyers, R. W. Matson, D. M. Zboray, R. Frison, R. Dommann, A. Neels, A. Xiao, X. Brillo, J. Busch, R. Novakovic, R. Srirangam, P. Fecht, H.-J. |
author_facet | Mohr, M. Dong, Y. Bracker, G. P. Hyers, R. W. Matson, D. M. Zboray, R. Frison, R. Dommann, A. Neels, A. Xiao, X. Brillo, J. Busch, R. Novakovic, R. Srirangam, P. Fecht, H.-J. |
author_sort | Mohr, M. |
collection | PubMed |
description | Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is necessary in order to gain a tight control over the solidification pathway, and over the obtained material structure of the solid. Measurements of thermophysical properties on ground are often difficult, or even impossible, since liquids are strongly influenced by earth’s gravity. Another problem is the reactivity of melts with container materials, especially at high temperature. Finally, deep undercooling, necessary to understand nucleus formation and equilibrium as well as non-equilibrium solidification, can only be achieved in a containerless environment. Containerless experiments in microgravity allow precise benchmark measurements of thermophysical properties. The electromagnetic levitator ISS-EML on the International Space Station (ISS) offers perfect conditions for such experiments. This way, data for process simulations is obtained, and a deeper understanding of nucleation, crystal growth, microstructural evolution, and other details of the transformation from liquid to solid can be gained. Here, we address the scientific questions in detail, show highlights of recent achievements, and give an outlook on future work. |
format | Online Article Text |
id | pubmed-10154313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101543132023-05-04 Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties Mohr, M. Dong, Y. Bracker, G. P. Hyers, R. W. Matson, D. M. Zboray, R. Frison, R. Dommann, A. Neels, A. Xiao, X. Brillo, J. Busch, R. Novakovic, R. Srirangam, P. Fecht, H.-J. NPJ Microgravity Review Article Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is necessary in order to gain a tight control over the solidification pathway, and over the obtained material structure of the solid. Measurements of thermophysical properties on ground are often difficult, or even impossible, since liquids are strongly influenced by earth’s gravity. Another problem is the reactivity of melts with container materials, especially at high temperature. Finally, deep undercooling, necessary to understand nucleus formation and equilibrium as well as non-equilibrium solidification, can only be achieved in a containerless environment. Containerless experiments in microgravity allow precise benchmark measurements of thermophysical properties. The electromagnetic levitator ISS-EML on the International Space Station (ISS) offers perfect conditions for such experiments. This way, data for process simulations is obtained, and a deeper understanding of nucleation, crystal growth, microstructural evolution, and other details of the transformation from liquid to solid can be gained. Here, we address the scientific questions in detail, show highlights of recent achievements, and give an outlook on future work. Nature Publishing Group UK 2023-05-02 /pmc/articles/PMC10154313/ /pubmed/37130899 http://dx.doi.org/10.1038/s41526-023-00281-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Article Mohr, M. Dong, Y. Bracker, G. P. Hyers, R. W. Matson, D. M. Zboray, R. Frison, R. Dommann, A. Neels, A. Xiao, X. Brillo, J. Busch, R. Novakovic, R. Srirangam, P. Fecht, H.-J. Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title | Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title_full | Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title_fullStr | Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title_full_unstemmed | Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title_short | Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
title_sort | electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154313/ https://www.ncbi.nlm.nih.gov/pubmed/37130899 http://dx.doi.org/10.1038/s41526-023-00281-4 |
work_keys_str_mv | AT mohrm electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT dongy electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT brackergp electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT hyersrw electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT matsondm electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT zborayr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT frisonr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT dommanna electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT neelsa electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT xiaox electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT brilloj electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT buschr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT novakovicr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT srirangamp electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties AT fechthj electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties |