Cargando…

Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties

Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohr, M., Dong, Y., Bracker, G. P., Hyers, R. W., Matson, D. M., Zboray, R., Frison, R., Dommann, A., Neels, A., Xiao, X., Brillo, J., Busch, R., Novakovic, R., Srirangam, P., Fecht, H.-J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154313/
https://www.ncbi.nlm.nih.gov/pubmed/37130899
http://dx.doi.org/10.1038/s41526-023-00281-4
_version_ 1785036101547720704
author Mohr, M.
Dong, Y.
Bracker, G. P.
Hyers, R. W.
Matson, D. M.
Zboray, R.
Frison, R.
Dommann, A.
Neels, A.
Xiao, X.
Brillo, J.
Busch, R.
Novakovic, R.
Srirangam, P.
Fecht, H.-J.
author_facet Mohr, M.
Dong, Y.
Bracker, G. P.
Hyers, R. W.
Matson, D. M.
Zboray, R.
Frison, R.
Dommann, A.
Neels, A.
Xiao, X.
Brillo, J.
Busch, R.
Novakovic, R.
Srirangam, P.
Fecht, H.-J.
author_sort Mohr, M.
collection PubMed
description Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is necessary in order to gain a tight control over the solidification pathway, and over the obtained material structure of the solid. Measurements of thermophysical properties on ground are often difficult, or even impossible, since liquids are strongly influenced by earth’s gravity. Another problem is the reactivity of melts with container materials, especially at high temperature. Finally, deep undercooling, necessary to understand nucleus formation and equilibrium as well as non-equilibrium solidification, can only be achieved in a containerless environment. Containerless experiments in microgravity allow precise benchmark measurements of thermophysical properties. The electromagnetic levitator ISS-EML on the International Space Station (ISS) offers perfect conditions for such experiments. This way, data for process simulations is obtained, and a deeper understanding of nucleation, crystal growth, microstructural evolution, and other details of the transformation from liquid to solid can be gained. Here, we address the scientific questions in detail, show highlights of recent achievements, and give an outlook on future work.
format Online
Article
Text
id pubmed-10154313
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101543132023-05-04 Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties Mohr, M. Dong, Y. Bracker, G. P. Hyers, R. W. Matson, D. M. Zboray, R. Frison, R. Dommann, A. Neels, A. Xiao, X. Brillo, J. Busch, R. Novakovic, R. Srirangam, P. Fecht, H.-J. NPJ Microgravity Review Article Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is necessary in order to gain a tight control over the solidification pathway, and over the obtained material structure of the solid. Measurements of thermophysical properties on ground are often difficult, or even impossible, since liquids are strongly influenced by earth’s gravity. Another problem is the reactivity of melts with container materials, especially at high temperature. Finally, deep undercooling, necessary to understand nucleus formation and equilibrium as well as non-equilibrium solidification, can only be achieved in a containerless environment. Containerless experiments in microgravity allow precise benchmark measurements of thermophysical properties. The electromagnetic levitator ISS-EML on the International Space Station (ISS) offers perfect conditions for such experiments. This way, data for process simulations is obtained, and a deeper understanding of nucleation, crystal growth, microstructural evolution, and other details of the transformation from liquid to solid can be gained. Here, we address the scientific questions in detail, show highlights of recent achievements, and give an outlook on future work. Nature Publishing Group UK 2023-05-02 /pmc/articles/PMC10154313/ /pubmed/37130899 http://dx.doi.org/10.1038/s41526-023-00281-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Review Article
Mohr, M.
Dong, Y.
Bracker, G. P.
Hyers, R. W.
Matson, D. M.
Zboray, R.
Frison, R.
Dommann, A.
Neels, A.
Xiao, X.
Brillo, J.
Busch, R.
Novakovic, R.
Srirangam, P.
Fecht, H.-J.
Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title_full Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title_fullStr Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title_full_unstemmed Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title_short Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
title_sort electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154313/
https://www.ncbi.nlm.nih.gov/pubmed/37130899
http://dx.doi.org/10.1038/s41526-023-00281-4
work_keys_str_mv AT mohrm electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT dongy electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT brackergp electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT hyersrw electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT matsondm electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT zborayr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT frisonr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT dommanna electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT neelsa electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT xiaox electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT brilloj electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT buschr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT novakovicr electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT srirangamp electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties
AT fechthj electromagneticlevitationcontainerlessprocessingofmetallicmaterialsinmicrogravitythermophysicalproperties