Cargando…

Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms

Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to im...

Descripción completa

Detalles Bibliográficos
Autores principales: Hachem, E., Meliga, P., Goetz, A., Rico, P. Jeken, Viquerat, J., Larcher, A., Valette, R., Sanches, A. F., Lannelongue, V., Ghraieb, H., Nemer, R., Ozpeynirci, Y., Liebig, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154322/
https://www.ncbi.nlm.nih.gov/pubmed/37130900
http://dx.doi.org/10.1038/s41598-023-34007-z
_version_ 1785036103437254656
author Hachem, E.
Meliga, P.
Goetz, A.
Rico, P. Jeken
Viquerat, J.
Larcher, A.
Valette, R.
Sanches, A. F.
Lannelongue, V.
Ghraieb, H.
Nemer, R.
Ozpeynirci, Y.
Liebig, T.
author_facet Hachem, E.
Meliga, P.
Goetz, A.
Rico, P. Jeken
Viquerat, J.
Larcher, A.
Valette, R.
Sanches, A. F.
Lannelongue, V.
Ghraieb, H.
Nemer, R.
Ozpeynirci, Y.
Liebig, T.
author_sort Hachem, E.
collection PubMed
description Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to improve the life quality and expectancy of patients. This study aims at identifying and characterizing novel flow-deviator stent devices through a high-fidelity computational framework that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algorithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment of the functional parameters in the implanted state.
format Online
Article
Text
id pubmed-10154322
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101543222023-05-04 Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms Hachem, E. Meliga, P. Goetz, A. Rico, P. Jeken Viquerat, J. Larcher, A. Valette, R. Sanches, A. F. Lannelongue, V. Ghraieb, H. Nemer, R. Ozpeynirci, Y. Liebig, T. Sci Rep Article Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to improve the life quality and expectancy of patients. This study aims at identifying and characterizing novel flow-deviator stent devices through a high-fidelity computational framework that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algorithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment of the functional parameters in the implanted state. Nature Publishing Group UK 2023-05-02 /pmc/articles/PMC10154322/ /pubmed/37130900 http://dx.doi.org/10.1038/s41598-023-34007-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hachem, E.
Meliga, P.
Goetz, A.
Rico, P. Jeken
Viquerat, J.
Larcher, A.
Valette, R.
Sanches, A. F.
Lannelongue, V.
Ghraieb, H.
Nemer, R.
Ozpeynirci, Y.
Liebig, T.
Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title_full Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title_fullStr Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title_full_unstemmed Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title_short Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
title_sort reinforcement learning for patient-specific optimal stenting of intracranial aneurysms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154322/
https://www.ncbi.nlm.nih.gov/pubmed/37130900
http://dx.doi.org/10.1038/s41598-023-34007-z
work_keys_str_mv AT hacheme reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT meligap reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT goetza reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT ricopjeken reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT viqueratj reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT larchera reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT valetter reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT sanchesaf reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT lannelonguev reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT ghraiebh reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT nemerr reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT ozpeynirciy reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms
AT liebigt reinforcementlearningforpatientspecificoptimalstentingofintracranialaneurysms