Cargando…

A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments

In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a...

Descripción completa

Detalles Bibliográficos
Autores principales: El Atwani, O., Vo, H. T., Tunes, M. A., Lee, C., Alvarado, A., Krienke, N., Poplawsky, J. D., Kohnert, A. A., Gigax, J., Chen, W.-Y., Li, M., Wang, Y. Q., Wróbel, J. S., Nguyen-Manh, D., Baldwin, J. K. S., Tukac, O. U., Aydogan, E., Fensin, S., Martinez, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154406/
https://www.ncbi.nlm.nih.gov/pubmed/37130885
http://dx.doi.org/10.1038/s41467-023-38000-y
Descripción
Sumario:In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a combined experimental and simulation methodology, we design a nanocrystalline refractory high entropy alloy (RHEA) system. Compositions assessed under extreme environments and in situ electron-microscopy reveal both high thermal stability and radiation resistance. We observe grain refinement under heavy ion irradiation and resistance to dual-beam irradiation and helium implantation in the form of low defect generation and evolution, as well as no detectable grain growth. The experimental and modeling results—showing a good agreement—can be applied to design and rapidly assess other alloys subjected to extreme environmental conditions.