Cargando…
Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons
Vascular endothelial growth factor (VEGF) was discovered by its angiogenic activity. However, during evolution, it appeared earlier as a neurotrophic factor required for the development of the nervous system in invertebrates lacking a circulatory system. We aimed at reviewing recent evidence indicat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154470/ https://www.ncbi.nlm.nih.gov/pubmed/36751781 http://dx.doi.org/10.4103/1673-5374.363194 |
_version_ | 1785036129122123776 |
---|---|
author | Calvo, Paula M. Hernández, Rosendo G. de la Cruz, Rosa R. Pastor, Angel M. |
author_facet | Calvo, Paula M. Hernández, Rosendo G. de la Cruz, Rosa R. Pastor, Angel M. |
author_sort | Calvo, Paula M. |
collection | PubMed |
description | Vascular endothelial growth factor (VEGF) was discovered by its angiogenic activity. However, during evolution, it appeared earlier as a neurotrophic factor required for the development of the nervous system in invertebrates lacking a circulatory system. We aimed at reviewing recent evidence indicating that VEGF has neuroprotective effects in neurons exposed to a variety of insults. Of particular interest is the link established between VEGF and motoneurons, especially after the design of the VEGF(δ/δ) mutant mice. These mice are characterized by low levels of VEGF and develop muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis. The administration of VEGF through several routes to animal models of amyotrophic lateral sclerosis delays motor impairment and motoneuron degeneration and increases life expectancy. There are new recent advances in the role of VEGF in the physiology of motoneurons. Our experimental aims use the extraocular (abducens) motoneurons lesioned by axotomy as a model for studying VEGF actions. Axotomized abducens motoneurons exhibit severe alterations in their discharge activity and a loss of synaptic boutons. The exogenous administration of VEGF to axotomized abducens motoneurons, either from the transected nerve or intraventricularly, fully restores the synaptic and discharge properties of abducens motoneurons, despite being axotomized. In addition, when an anti-VEGF neutralizing antibody is delivered from the muscle to intact, uninjured abducens motoneurons, these cells display alterations in their discharge pattern and a loss of synaptic boutons that resemble the state of axotomy. All these data indicate that VEGF is an essential neurotrophic factor for motoneurons. |
format | Online Article Text |
id | pubmed-10154470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-101544702023-05-04 Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons Calvo, Paula M. Hernández, Rosendo G. de la Cruz, Rosa R. Pastor, Angel M. Neural Regen Res Review Vascular endothelial growth factor (VEGF) was discovered by its angiogenic activity. However, during evolution, it appeared earlier as a neurotrophic factor required for the development of the nervous system in invertebrates lacking a circulatory system. We aimed at reviewing recent evidence indicating that VEGF has neuroprotective effects in neurons exposed to a variety of insults. Of particular interest is the link established between VEGF and motoneurons, especially after the design of the VEGF(δ/δ) mutant mice. These mice are characterized by low levels of VEGF and develop muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis. The administration of VEGF through several routes to animal models of amyotrophic lateral sclerosis delays motor impairment and motoneuron degeneration and increases life expectancy. There are new recent advances in the role of VEGF in the physiology of motoneurons. Our experimental aims use the extraocular (abducens) motoneurons lesioned by axotomy as a model for studying VEGF actions. Axotomized abducens motoneurons exhibit severe alterations in their discharge activity and a loss of synaptic boutons. The exogenous administration of VEGF to axotomized abducens motoneurons, either from the transected nerve or intraventricularly, fully restores the synaptic and discharge properties of abducens motoneurons, despite being axotomized. In addition, when an anti-VEGF neutralizing antibody is delivered from the muscle to intact, uninjured abducens motoneurons, these cells display alterations in their discharge pattern and a loss of synaptic boutons that resemble the state of axotomy. All these data indicate that VEGF is an essential neurotrophic factor for motoneurons. Wolters Kluwer - Medknow 2022-12-21 /pmc/articles/PMC10154470/ /pubmed/36751781 http://dx.doi.org/10.4103/1673-5374.363194 Text en Copyright: © Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Calvo, Paula M. Hernández, Rosendo G. de la Cruz, Rosa R. Pastor, Angel M. Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title | Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title_full | Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title_fullStr | Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title_full_unstemmed | Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title_short | Role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
title_sort | role of vascular endothelial growth factor as a critical neurotrophic factor for the survival and physiology of motoneurons |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154470/ https://www.ncbi.nlm.nih.gov/pubmed/36751781 http://dx.doi.org/10.4103/1673-5374.363194 |
work_keys_str_mv | AT calvopaulam roleofvascularendothelialgrowthfactorasacriticalneurotrophicfactorforthesurvivalandphysiologyofmotoneurons AT hernandezrosendog roleofvascularendothelialgrowthfactorasacriticalneurotrophicfactorforthesurvivalandphysiologyofmotoneurons AT delacruzrosar roleofvascularendothelialgrowthfactorasacriticalneurotrophicfactorforthesurvivalandphysiologyofmotoneurons AT pastorangelm roleofvascularendothelialgrowthfactorasacriticalneurotrophicfactorforthesurvivalandphysiologyofmotoneurons |