Cargando…

Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder

We previously showed that death-associated protein kinase 1 (DAPK1) expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer’s disease. In addition, depression is a risk factor for developing Alzheimer’s disease,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao-Hui, Zhu, Hong-Can, Cui, Xue-Min, Wang, Wang, Yang, Lin, Wang, Li-Bo, Hu, Neng-Wei, Duan, Dong-Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154471/
https://www.ncbi.nlm.nih.gov/pubmed/36751808
http://dx.doi.org/10.4103/1673-5374.361532
Descripción
Sumario:We previously showed that death-associated protein kinase 1 (DAPK1) expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer’s disease. In addition, depression is a risk factor for developing Alzheimer’s disease, as well as an early clinical manifestation of Alzheimer’s disease. Meanwhile, cognitive dysfunction is a distinctive feature of major depressive disorder. Therefore, DAPK1 may be related to cognitive dysfunction in major depressive disorder. In this study, we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic, mild, unpredictable stressors. We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area, and tau was hyperphosphorylated at Thr231, Ser262, and Ser396 in these mice. Furthermore, DAPK1 shifted from axonal expression to overexpression on the cell membrane. Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction. These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.