Cargando…
Microglia and astrocytes mediate synapse engulfment in a MER tyrosine kinase-dependent manner after traumatic brain injury
Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models, but it is unclear whether the same mechanism is also active in traumatic brain injury. In this study, we established a mouse model...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154480/ https://www.ncbi.nlm.nih.gov/pubmed/36751804 http://dx.doi.org/10.4103/1673-5374.363187 |
Sumario: | Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models, but it is unclear whether the same mechanism is also active in traumatic brain injury. In this study, we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury. Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function. In addition, in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice, the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased, and the total number of dendritic spines was increased. Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis, and inhibiting this process could be a new strategy for treating traumatic brain injury. |
---|