Cargando…

Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury

Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly co...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yao, Wang, Yi-Piao, Cheng, Xin, Yang, Xuesong, Wang, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154487/
https://www.ncbi.nlm.nih.gov/pubmed/36751772
http://dx.doi.org/10.4103/1673-5374.363189
Descripción
Sumario:Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly conserved “gatekeeper” of cell homeostasis, autophagy can regulate cell remodeling by precisely controlling protein turnover in cells. Recently, it has been found that the expression of autophagy markers changes in animal models of spinal cord injury. Therefore, understanding whether autophagy can affect the fate of stem cells and promote the repair of spinal cord injury is of considerable clinical value. This review expounds the importance of autophagy homeostasis control for the repair of spinal cord injury from three aspects—pathophysiology of spinal cord injury, autophagy and stem cell function, and autophagy and stem cell function in spinal cord injury—and proposes the synergistic therapeutic effect of autophagy and stem cells in spinal cord injury.