Cargando…
Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury
Experimental studies have shown that exercise and human adipose-derived stem cells (ADSCs) play positive roles in spinal cord injury (SCI). However, whether ADSCs and/or exercise have a positive effect on SCI-induced neuropathic pain is still unclear. Thus, there is a need to explore the effects of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154510/ https://www.ncbi.nlm.nih.gov/pubmed/36751814 http://dx.doi.org/10.4103/1673-5374.361533 |
_version_ | 1785036138736517120 |
---|---|
author | Cheng, Xing Mao, Gu-Ping Hu, Wen-Jie Yu, Zheng-Ran Xu, Yi-Yang Chen, Wei Li, Xiang Zeng, Xiao-Lin Zhang, Wen-Wu Chen, Jie-Wen Wan, Yong Wang, Le |
author_facet | Cheng, Xing Mao, Gu-Ping Hu, Wen-Jie Yu, Zheng-Ran Xu, Yi-Yang Chen, Wei Li, Xiang Zeng, Xiao-Lin Zhang, Wen-Wu Chen, Jie-Wen Wan, Yong Wang, Le |
author_sort | Cheng, Xing |
collection | PubMed |
description | Experimental studies have shown that exercise and human adipose-derived stem cells (ADSCs) play positive roles in spinal cord injury (SCI). However, whether ADSCs and/or exercise have a positive effect on SCI-induced neuropathic pain is still unclear. Thus, there is a need to explore the effects of exercise combined with administration of ADSCs on neuropathic pain after SCI. In this study, a thoracic 11 (T11) SCI contusion model was established in adult C57BL/6 mice. Exercise was initiated from 7 days post-injury and continued to 28 days post-injury, and approximately 1 × 10(5) ADSCs were transplanted into the T11 spinal cord lesion site immediately after SCI. Motor function and neuropathic pain-related behaviors were assessed weekly using the Basso Mouse Scale, von Frey filament test, Hargreaves method, and cold plate test. Histological studies (Eriochrome cyanine staining and immunohistochemistry) were performed at the end of the experiment (28 days post-injury). Exercise combined with administration of ADSCs partially improved early motor function (7, 14, and 21 days post-injury), mechanical allodynia, mechanical hypoalgesia, thermal hyperalgesia, and thermal hypoalgesia. Administration of ADSCs reduced white and gray matter loss at the lesion site. In addition, fewer microglia and astrocytes (as identified by expression of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, respectively) were present in the lumbar dorsal horn in the SCI + ADSCs and SCI + exercise + ADSCs groups compared with the sham group. Our findings suggest that exercise combined with administration of ADSCs is beneficial for the early recovery of motor function and could partially ameliorate SCI-induced neuropathic pain. |
format | Online Article Text |
id | pubmed-10154510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-101545102023-05-04 Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury Cheng, Xing Mao, Gu-Ping Hu, Wen-Jie Yu, Zheng-Ran Xu, Yi-Yang Chen, Wei Li, Xiang Zeng, Xiao-Lin Zhang, Wen-Wu Chen, Jie-Wen Wan, Yong Wang, Le Neural Regen Res Research Article Experimental studies have shown that exercise and human adipose-derived stem cells (ADSCs) play positive roles in spinal cord injury (SCI). However, whether ADSCs and/or exercise have a positive effect on SCI-induced neuropathic pain is still unclear. Thus, there is a need to explore the effects of exercise combined with administration of ADSCs on neuropathic pain after SCI. In this study, a thoracic 11 (T11) SCI contusion model was established in adult C57BL/6 mice. Exercise was initiated from 7 days post-injury and continued to 28 days post-injury, and approximately 1 × 10(5) ADSCs were transplanted into the T11 spinal cord lesion site immediately after SCI. Motor function and neuropathic pain-related behaviors were assessed weekly using the Basso Mouse Scale, von Frey filament test, Hargreaves method, and cold plate test. Histological studies (Eriochrome cyanine staining and immunohistochemistry) were performed at the end of the experiment (28 days post-injury). Exercise combined with administration of ADSCs partially improved early motor function (7, 14, and 21 days post-injury), mechanical allodynia, mechanical hypoalgesia, thermal hyperalgesia, and thermal hypoalgesia. Administration of ADSCs reduced white and gray matter loss at the lesion site. In addition, fewer microglia and astrocytes (as identified by expression of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, respectively) were present in the lumbar dorsal horn in the SCI + ADSCs and SCI + exercise + ADSCs groups compared with the sham group. Our findings suggest that exercise combined with administration of ADSCs is beneficial for the early recovery of motor function and could partially ameliorate SCI-induced neuropathic pain. Wolters Kluwer - Medknow 2022-11-25 /pmc/articles/PMC10154510/ /pubmed/36751814 http://dx.doi.org/10.4103/1673-5374.361533 Text en Copyright: © Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Cheng, Xing Mao, Gu-Ping Hu, Wen-Jie Yu, Zheng-Ran Xu, Yi-Yang Chen, Wei Li, Xiang Zeng, Xiao-Lin Zhang, Wen-Wu Chen, Jie-Wen Wan, Yong Wang, Le Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title | Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title_full | Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title_fullStr | Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title_full_unstemmed | Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title_short | Exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
title_sort | exercise combined with administration of adipose-derived stem cells ameliorates neuropathic pain after spinal cord injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154510/ https://www.ncbi.nlm.nih.gov/pubmed/36751814 http://dx.doi.org/10.4103/1673-5374.361533 |
work_keys_str_mv | AT chengxing exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT maoguping exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT huwenjie exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT yuzhengran exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT xuyiyang exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT chenwei exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT lixiang exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT zengxiaolin exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT zhangwenwu exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT chenjiewen exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT wanyong exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury AT wangle exercisecombinedwithadministrationofadiposederivedstemcellsamelioratesneuropathicpainafterspinalcordinjury |