Cargando…
Heel riser height and slope gradient influence the physiology of ski mountaineering—A laboratory study
In ski mountaineering it is the goal to reach the top of a mountain by sheer muscle force. The specific equipment (flexible boot, only toe fixated binding, and a skin on the ski to prevent from slipping backwards) enables the skier to move up the hill ergonomically, where the heel part of the bindin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154589/ https://www.ncbi.nlm.nih.gov/pubmed/37153216 http://dx.doi.org/10.3389/fphys.2023.1159728 |
Sumario: | In ski mountaineering it is the goal to reach the top of a mountain by sheer muscle force. The specific equipment (flexible boot, only toe fixated binding, and a skin on the ski to prevent from slipping backwards) enables the skier to move up the hill ergonomically, where the heel part of the binding offers a special adaptation possibility. The so-called riser height supports the heel standing height and can be adjusted to individually preferred settings. General recommendations suggest using lower heel support in flat ascents and higher heel support in steep ascents to maintain upright posture and lower the strain. Still, it remains unclear whether the application of riser height affects the physiological response during ski mountaineering. This study was designed to investigate the effects of riser height on physiological response during indoor ski mountaineering. Nineteen participants took part in the study and walked on a treadmill with ski mountaineering equipment. The three available riser heights (low, medium, and high) were applied randomized at 8%, 16%, and 24% gradient. Results show that global physiological measurements like heart rate (p = 0.34), oxygen uptake (p = 0.26) or blood lactate (p = 0.38) values were not affected by changes in riser height. But local measurements of muscle oxygen saturation were affected by the riser height. Additionally comfort and rating of perceived exertion were also prone to changes in riser height. These results suggest differences on local measurements and perceived parameters, while global physiological measurements did not change. The results are in line with the existing recommendations but need to be confirmed in an outdoor setting as well. |
---|