Cargando…

Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review

BACKGROUND: Over the last decade, augmented reality (AR) has emerged in health care as a tool for visualizing data and enhancing simulation learning. AR, which has largely been explored for communication and collaboration in nonhealth contexts, could play a role in shaping future remote medical serv...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinh, Alana, Yin, Andrew Lukas, Estrin, Deborah, Greenwald, Peter, Fortenko, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155085/
https://www.ncbi.nlm.nih.gov/pubmed/37071458
http://dx.doi.org/10.2196/45464
_version_ 1785036259743236096
author Dinh, Alana
Yin, Andrew Lukas
Estrin, Deborah
Greenwald, Peter
Fortenko, Alexander
author_facet Dinh, Alana
Yin, Andrew Lukas
Estrin, Deborah
Greenwald, Peter
Fortenko, Alexander
author_sort Dinh, Alana
collection PubMed
description BACKGROUND: Over the last decade, augmented reality (AR) has emerged in health care as a tool for visualizing data and enhancing simulation learning. AR, which has largely been explored for communication and collaboration in nonhealth contexts, could play a role in shaping future remote medical services and training. This review summarized existing studies implementing AR in real-time telemedicine and telementoring to create a foundation for health care providers and technology developers to understand future opportunities in remote care and education. OBJECTIVE: This review described devices and platforms that use AR for real-time telemedicine and telementoring, the tasks for which AR was implemented, and the ways in which these implementations were evaluated to identify gaps in research that provide opportunities for further study. METHODS: We searched PubMed, Scopus, Embase, and MEDLINE to identify English-language studies published between January 1, 2012, and October 18, 2022, implementing AR technology in a real-time interaction related to telemedicine or telementoring. The search terms were “augmented reality” OR “AR” AND “remote” OR “telemedicine” OR “telehealth” OR “telementoring.” Systematic reviews, meta-analyses, and discussion-based articles were excluded from analysis. RESULTS: A total of 39 articles met the inclusion criteria and were categorized into themes of patient evaluation, medical intervention, and education. In total, 20 devices and platforms using AR were identified, with common features being the ability for remote users to annotate, display graphics, and display their hands or tools in the local user’s view. Common themes across the studies included consultation and procedural education, with surgery, emergency, and hospital medicine being the most represented specialties. Outcomes were most often measured using feedback surveys and interviews. The most common objective measures were time to task completion and performance. Long-term outcome and resource cost measurements were rare. Across the studies, user feedback was consistently positive for perceived efficacy, feasibility, and acceptability. Comparative trials demonstrated that AR-assisted conditions had noninferior reliability and performance and did not consistently extend procedure times compared with in-person controls. CONCLUSIONS: Studies implementing AR in telemedicine and telementoring demonstrated the technology’s ability to enhance access to information and facilitate guidance in multiple health care settings. However, AR’s role as an alternative to current telecommunication platforms or even in-person interactions remains to be validated, with many disciplines and provider-to-nonprovider uses still lacking robust investigation. Additional studies comparing existing methods may offer more insight into this intersection, but the early stage of technical development and the lack of standardized tools and adoption have hindered the conduct of larger longitudinal and randomized controlled trials. Overall, AR has the potential to complement and advance the capabilities of remote medical care and learning, creating unique opportunities for innovator, provider, and patient involvement.
format Online
Article
Text
id pubmed-10155085
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-101550852023-05-04 Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review Dinh, Alana Yin, Andrew Lukas Estrin, Deborah Greenwald, Peter Fortenko, Alexander JMIR Mhealth Uhealth Review BACKGROUND: Over the last decade, augmented reality (AR) has emerged in health care as a tool for visualizing data and enhancing simulation learning. AR, which has largely been explored for communication and collaboration in nonhealth contexts, could play a role in shaping future remote medical services and training. This review summarized existing studies implementing AR in real-time telemedicine and telementoring to create a foundation for health care providers and technology developers to understand future opportunities in remote care and education. OBJECTIVE: This review described devices and platforms that use AR for real-time telemedicine and telementoring, the tasks for which AR was implemented, and the ways in which these implementations were evaluated to identify gaps in research that provide opportunities for further study. METHODS: We searched PubMed, Scopus, Embase, and MEDLINE to identify English-language studies published between January 1, 2012, and October 18, 2022, implementing AR technology in a real-time interaction related to telemedicine or telementoring. The search terms were “augmented reality” OR “AR” AND “remote” OR “telemedicine” OR “telehealth” OR “telementoring.” Systematic reviews, meta-analyses, and discussion-based articles were excluded from analysis. RESULTS: A total of 39 articles met the inclusion criteria and were categorized into themes of patient evaluation, medical intervention, and education. In total, 20 devices and platforms using AR were identified, with common features being the ability for remote users to annotate, display graphics, and display their hands or tools in the local user’s view. Common themes across the studies included consultation and procedural education, with surgery, emergency, and hospital medicine being the most represented specialties. Outcomes were most often measured using feedback surveys and interviews. The most common objective measures were time to task completion and performance. Long-term outcome and resource cost measurements were rare. Across the studies, user feedback was consistently positive for perceived efficacy, feasibility, and acceptability. Comparative trials demonstrated that AR-assisted conditions had noninferior reliability and performance and did not consistently extend procedure times compared with in-person controls. CONCLUSIONS: Studies implementing AR in telemedicine and telementoring demonstrated the technology’s ability to enhance access to information and facilitate guidance in multiple health care settings. However, AR’s role as an alternative to current telecommunication platforms or even in-person interactions remains to be validated, with many disciplines and provider-to-nonprovider uses still lacking robust investigation. Additional studies comparing existing methods may offer more insight into this intersection, but the early stage of technical development and the lack of standardized tools and adoption have hindered the conduct of larger longitudinal and randomized controlled trials. Overall, AR has the potential to complement and advance the capabilities of remote medical care and learning, creating unique opportunities for innovator, provider, and patient involvement. JMIR Publications 2023-04-18 /pmc/articles/PMC10155085/ /pubmed/37071458 http://dx.doi.org/10.2196/45464 Text en ©Alana Dinh, Andrew Lukas Yin, Deborah Estrin, Peter Greenwald, Alexander Fortenko. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 18.04.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Review
Dinh, Alana
Yin, Andrew Lukas
Estrin, Deborah
Greenwald, Peter
Fortenko, Alexander
Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title_full Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title_fullStr Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title_full_unstemmed Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title_short Augmented Reality in Real-time Telemedicine and Telementoring: Scoping Review
title_sort augmented reality in real-time telemedicine and telementoring: scoping review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155085/
https://www.ncbi.nlm.nih.gov/pubmed/37071458
http://dx.doi.org/10.2196/45464
work_keys_str_mv AT dinhalana augmentedrealityinrealtimetelemedicineandtelementoringscopingreview
AT yinandrewlukas augmentedrealityinrealtimetelemedicineandtelementoringscopingreview
AT estrindeborah augmentedrealityinrealtimetelemedicineandtelementoringscopingreview
AT greenwaldpeter augmentedrealityinrealtimetelemedicineandtelementoringscopingreview
AT fortenkoalexander augmentedrealityinrealtimetelemedicineandtelementoringscopingreview