Cargando…
The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data
BACKGROUND: This large-scale analysis pools individual data about the Clinical Frailty Scale (CFS) to predict outcome in the intensive care unit (ICU). METHODS: A systematic search identified all clinical trials that used the CFS in the ICU (PubMed searched until 24th June 2020). All patients who we...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155148/ https://www.ncbi.nlm.nih.gov/pubmed/37133796 http://dx.doi.org/10.1186/s13613-023-01132-x |
_version_ | 1785036271628845056 |
---|---|
author | Bruno, Raphael Romano Wernly, Bernhard Bagshaw, Sean M. van den Boogaard, Mark Darvall, Jai N. De Geer, Lina de Gopegui Miguelena, Pablo Ruiz Heyland, Daren K. Hewitt, David Hope, Aluko A. Langlais, Emilie Le Maguet, Pascale Montgomery, Carmel L. Papageorgiou, Dimitrios Seguin, Philippe Geense, Wytske W. Silva-Obregón, J. Alberto Wolff, Georg Polzin, Amin Dannenberg, Lisa Kelm, Malte Flaatten, Hans Beil, Michael Franz, Marcus Sviri, Sigal Leaver, Susannah Guidet, Bertrand Boumendil, Ariane Jung, Christian |
author_facet | Bruno, Raphael Romano Wernly, Bernhard Bagshaw, Sean M. van den Boogaard, Mark Darvall, Jai N. De Geer, Lina de Gopegui Miguelena, Pablo Ruiz Heyland, Daren K. Hewitt, David Hope, Aluko A. Langlais, Emilie Le Maguet, Pascale Montgomery, Carmel L. Papageorgiou, Dimitrios Seguin, Philippe Geense, Wytske W. Silva-Obregón, J. Alberto Wolff, Georg Polzin, Amin Dannenberg, Lisa Kelm, Malte Flaatten, Hans Beil, Michael Franz, Marcus Sviri, Sigal Leaver, Susannah Guidet, Bertrand Boumendil, Ariane Jung, Christian |
author_sort | Bruno, Raphael Romano |
collection | PubMed |
description | BACKGROUND: This large-scale analysis pools individual data about the Clinical Frailty Scale (CFS) to predict outcome in the intensive care unit (ICU). METHODS: A systematic search identified all clinical trials that used the CFS in the ICU (PubMed searched until 24th June 2020). All patients who were electively admitted were excluded. The primary outcome was ICU mortality. Regression models were estimated on the complete data set, and for missing data, multiple imputations were utilised. Cox models were adjusted for age, sex, and illness acuity score (SOFA, SAPS II or APACHE II). RESULTS: 12 studies from 30 countries with anonymised individualised patient data were included (n = 23,989 patients). In the univariate analysis for all patients, being frail (CFS ≥ 5) was associated with an increased risk of ICU mortality, but not after adjustment. In older patients (≥ 65 years) there was an independent association with ICU mortality both in the complete case analysis (HR 1.34 (95% CI 1.25–1.44), p < 0.0001) and in the multiple imputation analysis (HR 1.35 (95% CI 1.26–1.45), p < 0.0001, adjusted for SOFA). In older patients, being vulnerable (CFS 4) alone did not significantly differ from being frail. After adjustment, a CFS of 4–5, 6, and ≥ 7 was associated with a significantly worse outcome compared to CFS of 1–3. CONCLUSIONS: Being frail is associated with a significantly increased risk for ICU mortality in older patients, while being vulnerable alone did not significantly differ. New Frailty categories might reflect its “continuum” better and predict ICU outcome more accurately. Trial registration: Open Science Framework (OSF: https://osf.io/8buwk/). GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-023-01132-x. |
format | Online Article Text |
id | pubmed-10155148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-101551482023-05-05 The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data Bruno, Raphael Romano Wernly, Bernhard Bagshaw, Sean M. van den Boogaard, Mark Darvall, Jai N. De Geer, Lina de Gopegui Miguelena, Pablo Ruiz Heyland, Daren K. Hewitt, David Hope, Aluko A. Langlais, Emilie Le Maguet, Pascale Montgomery, Carmel L. Papageorgiou, Dimitrios Seguin, Philippe Geense, Wytske W. Silva-Obregón, J. Alberto Wolff, Georg Polzin, Amin Dannenberg, Lisa Kelm, Malte Flaatten, Hans Beil, Michael Franz, Marcus Sviri, Sigal Leaver, Susannah Guidet, Bertrand Boumendil, Ariane Jung, Christian Ann Intensive Care Research BACKGROUND: This large-scale analysis pools individual data about the Clinical Frailty Scale (CFS) to predict outcome in the intensive care unit (ICU). METHODS: A systematic search identified all clinical trials that used the CFS in the ICU (PubMed searched until 24th June 2020). All patients who were electively admitted were excluded. The primary outcome was ICU mortality. Regression models were estimated on the complete data set, and for missing data, multiple imputations were utilised. Cox models were adjusted for age, sex, and illness acuity score (SOFA, SAPS II or APACHE II). RESULTS: 12 studies from 30 countries with anonymised individualised patient data were included (n = 23,989 patients). In the univariate analysis for all patients, being frail (CFS ≥ 5) was associated with an increased risk of ICU mortality, but not after adjustment. In older patients (≥ 65 years) there was an independent association with ICU mortality both in the complete case analysis (HR 1.34 (95% CI 1.25–1.44), p < 0.0001) and in the multiple imputation analysis (HR 1.35 (95% CI 1.26–1.45), p < 0.0001, adjusted for SOFA). In older patients, being vulnerable (CFS 4) alone did not significantly differ from being frail. After adjustment, a CFS of 4–5, 6, and ≥ 7 was associated with a significantly worse outcome compared to CFS of 1–3. CONCLUSIONS: Being frail is associated with a significantly increased risk for ICU mortality in older patients, while being vulnerable alone did not significantly differ. New Frailty categories might reflect its “continuum” better and predict ICU outcome more accurately. Trial registration: Open Science Framework (OSF: https://osf.io/8buwk/). GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13613-023-01132-x. Springer International Publishing 2023-05-03 /pmc/articles/PMC10155148/ /pubmed/37133796 http://dx.doi.org/10.1186/s13613-023-01132-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Bruno, Raphael Romano Wernly, Bernhard Bagshaw, Sean M. van den Boogaard, Mark Darvall, Jai N. De Geer, Lina de Gopegui Miguelena, Pablo Ruiz Heyland, Daren K. Hewitt, David Hope, Aluko A. Langlais, Emilie Le Maguet, Pascale Montgomery, Carmel L. Papageorgiou, Dimitrios Seguin, Philippe Geense, Wytske W. Silva-Obregón, J. Alberto Wolff, Georg Polzin, Amin Dannenberg, Lisa Kelm, Malte Flaatten, Hans Beil, Michael Franz, Marcus Sviri, Sigal Leaver, Susannah Guidet, Bertrand Boumendil, Ariane Jung, Christian The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title | The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title_full | The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title_fullStr | The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title_full_unstemmed | The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title_short | The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
title_sort | clinical frailty scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155148/ https://www.ncbi.nlm.nih.gov/pubmed/37133796 http://dx.doi.org/10.1186/s13613-023-01132-x |
work_keys_str_mv | AT brunoraphaelromano theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT wernlybernhard theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT bagshawseanm theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT vandenboogaardmark theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT darvalljain theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT degeerlina theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT degopeguimiguelenapabloruiz theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT heylanddarenk theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT hewittdavid theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT hopealukoa theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT langlaisemilie theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT lemaguetpascale theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT montgomerycarmell theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT papageorgioudimitrios theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT seguinphilippe theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT geensewytskew theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT silvaobregonjalberto theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT wolffgeorg theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT polzinamin theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT dannenberglisa theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT kelmmalte theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT flaattenhans theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT beilmichael theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT franzmarcus theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT svirisigal theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT leaversusannah theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT guidetbertrand theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT boumendilariane theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT jungchristian theclinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT brunoraphaelromano clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT wernlybernhard clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT bagshawseanm clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT vandenboogaardmark clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT darvalljain clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT degeerlina clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT degopeguimiguelenapabloruiz clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT heylanddarenk clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT hewittdavid clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT hopealukoa clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT langlaisemilie clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT lemaguetpascale clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT montgomerycarmell clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT papageorgioudimitrios clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT seguinphilippe clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT geensewytskew clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT silvaobregonjalberto clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT wolffgeorg clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT polzinamin clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT dannenberglisa clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT kelmmalte clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT flaattenhans clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT beilmichael clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT franzmarcus clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT svirisigal clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT leaversusannah clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT guidetbertrand clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT boumendilariane clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata AT jungchristian clinicalfrailtyscaleformortalitypredictionofoldacutelyadmittedintensivecarepatientsametaanalysisofindividualpatientleveldata |