Cargando…
Quantitative Structural Description of Zeolites by Machine Learning Analysis of Infrared Spectra
[Image: see text] Application of machine learning (ML) algorithms to spectroscopic data has a great potential for obtaining hidden correlations between structural information and spectral features. Here, we apply ML algorithms to theoretically simulated infrared (IR) spectra to establish the structu...
Autores principales: | Skorynina, Alina A., Protsenko, Bogdan O., Usoltsev, Oleg A., Guda, Sergey A., Bugaev, Aram L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155178/ https://www.ncbi.nlm.nih.gov/pubmed/37058157 http://dx.doi.org/10.1021/acs.inorgchem.2c04395 |
Ejemplares similares
-
Dehydrogenation of Ethylene on Supported Palladium Nanoparticles: A Double View from Metal and Hydrocarbon Sides
por: Usoltsev, Oleg A., et al.
Publicado: (2020) -
In situ X-ray absorption spectroscopy data during formation of active Pt- and Pd-sites in functionalized UiO-67 metal-organic frameworks
por: Bugaev, Aram L., et al.
Publicado: (2019) -
Machine learning molecular dynamics for the simulation of infrared spectra
por: Gastegger, Michael, et al.
Publicado: (2017) -
Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles
por: Bugaev, Aram L., et al.
Publicado: (2019) -
Use of Machine Learning and Infrared Spectra for Rheological Characterization and Application to the Apricot
por: Cadet, Xavier F., et al.
Publicado: (2019)