Cargando…
Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity
[Image: see text] Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate ca...
Autores principales: | Czub, Natalia, Szlęk, Jakub, Pacławski, Adam, Klimończyk, Klaudia, Puccetti, Matteo, Mendyk, Aleksander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155205/ https://www.ncbi.nlm.nih.gov/pubmed/37070956 http://dx.doi.org/10.1021/acs.molpharmaceut.2c01117 |
Ejemplares similares
-
Curated Database and Preliminary AutoML QSAR Model for 5-HT1A Receptor
por: Czub, Natalia, et al.
Publicado: (2021) -
Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT(1A) Receptor Case
por: Czub, Natalia, et al.
Publicado: (2022) -
Puzzle out Machine Learning Model-Explaining Disintegration Process in ODTs
por: Szlęk, Jakub, et al.
Publicado: (2022) -
Quantitative Assessment of the Physiological Parameters Influencing QT Interval Response to Medication: Application of Computational Intelligence Tools
por: Polak, Sebastian, et al.
Publicado: (2018) -
Heuristic modeling of macromolecule release from PLGA microspheres
por: Szlęk, Jakub, et al.
Publicado: (2013)