Cargando…
Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model
BACKGROUND: Identifying patterns within ICU medication regimens may help artificial intelligence algorithms to better predict patient outcomes; however, machine learning methods incorporating medications require further development, including standardized terminology. The Common Data Model for Inten...
Autores principales: | Sikora, Andrea, Rafiei, Alireza, Rad, Milad Ghiasi, Keats, Kelli, Smith, Susan E., Devlin, John W., Murphy, David J., Murray, Brian, Kamaleswaran, Rishikesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155304/ https://www.ncbi.nlm.nih.gov/pubmed/37131200 http://dx.doi.org/10.1186/s13054-023-04437-2 |
Ejemplares similares
-
Cluster analysis driven by unsupervised latent feature learning of medications to identify novel pharmacophenotypes of critically ill patients
por: Sikora, Andrea, et al.
Publicado: (2023) -
Cluster analysis of plasma cytokines identifies two unique endotypes of children with asthma in the pediatric intensive care unit
por: Cottrill, Kirsten A., et al.
Publicado: (2023) -
Cluster analysis and profiling of airway fluid metabolites in pediatric acute hypoxemic respiratory failure
por: Grunwell, Jocelyn R., et al.
Publicado: (2021) -
Bioenergetic Crisis in ICU-Acquired Weakness Gene Signatures Was Associated With Sepsis-Related Mortality: A Brief Report
por: Kobara, Seibi, et al.
Publicado: (2022) -
Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU
por: Sikora, Andrea, et al.
Publicado: (2023)