Cargando…
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
BACKGROUND: Single-cell RNA sequencing is a state-of-the-art technology to understand gene expression in complex tissues. With the growing amount of data being generated, the standardization and automation of data analysis are critical to generating hypotheses and discovering biological insights. RE...
Autores principales: | Li, Kejie, Sun, Yu H., Ouyang, Zhengyu, Negi, Soumya, Gao, Zhen, Zhu, Jing, Wang, Wanli, Chen, Yirui, Piya, Sarbottam, Hu, Wenxing, Zavodszky, Maria I., Yalamanchili, Hima, Cao, Shaolong, Gehrke, Andrew, Sheehan, Mark, Huh, Dann, Casey, Fergal, Zhang, Xinmin, Zhang, Baohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155351/ https://www.ncbi.nlm.nih.gov/pubmed/37131143 http://dx.doi.org/10.1186/s12864-023-09332-2 |
Ejemplares similares
-
Recommendations of scRNA-seq Differential Gene Expression Analysis Based on Comprehensive Benchmarking
por: Gagnon, Jake, et al.
Publicado: (2022) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
scX: A user-friendly tool for scRNA-seq exploration
por: Waichman, Tomás Vega, et al.
Publicado: (2023) -
A statistical simulator scDesign for rational scRNA-seq experimental design
por: Li, Wei Vivian, et al.
Publicado: (2019) -
scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
por: Yan, Xuhua, et al.
Publicado: (2023)