Cargando…
High-throughput UV-photofragmentation studies of thymine and guanine
High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed u...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155487/ https://www.ncbi.nlm.nih.gov/pubmed/37083208 http://dx.doi.org/10.1039/d3cp00328k |
_version_ | 1785036338961055744 |
---|---|
author | Wang, Siwen Dauletyarov, Yerbolat Krüger, Peter Horke, Daniel A. |
author_facet | Wang, Siwen Dauletyarov, Yerbolat Krüger, Peter Horke, Daniel A. |
author_sort | Wang, Siwen |
collection | PubMed |
description | High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed us to produce detailed 2D maps of fragmentation as a function of incident laser intensity. The fragmentation was distinctly soft, the parent ions being at least an order of magnitude more abundant than fragment ions. For thymine there was a single dominant fragmentation channel, which involves consecutive HNCO and CO losses. In contrast, for guanine there were several competing ones, the most probable channel corresponding to CH(2)N(2) loss through opening of the pyrimidine ring. The dependence of parent ion abundance on the ionisation laser intensity showed that at 257 nm the ionisation of thymine is a 1 + 1 resonance enhanced process through its open-shell singlet state. |
format | Online Article Text |
id | pubmed-10155487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-101554872023-05-04 High-throughput UV-photofragmentation studies of thymine and guanine Wang, Siwen Dauletyarov, Yerbolat Krüger, Peter Horke, Daniel A. Phys Chem Chem Phys Chemistry High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed us to produce detailed 2D maps of fragmentation as a function of incident laser intensity. The fragmentation was distinctly soft, the parent ions being at least an order of magnitude more abundant than fragment ions. For thymine there was a single dominant fragmentation channel, which involves consecutive HNCO and CO losses. In contrast, for guanine there were several competing ones, the most probable channel corresponding to CH(2)N(2) loss through opening of the pyrimidine ring. The dependence of parent ion abundance on the ionisation laser intensity showed that at 257 nm the ionisation of thymine is a 1 + 1 resonance enhanced process through its open-shell singlet state. The Royal Society of Chemistry 2023-04-17 /pmc/articles/PMC10155487/ /pubmed/37083208 http://dx.doi.org/10.1039/d3cp00328k Text en This journal is © the Owner Societies https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Wang, Siwen Dauletyarov, Yerbolat Krüger, Peter Horke, Daniel A. High-throughput UV-photofragmentation studies of thymine and guanine |
title | High-throughput UV-photofragmentation studies of thymine and guanine |
title_full | High-throughput UV-photofragmentation studies of thymine and guanine |
title_fullStr | High-throughput UV-photofragmentation studies of thymine and guanine |
title_full_unstemmed | High-throughput UV-photofragmentation studies of thymine and guanine |
title_short | High-throughput UV-photofragmentation studies of thymine and guanine |
title_sort | high-throughput uv-photofragmentation studies of thymine and guanine |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155487/ https://www.ncbi.nlm.nih.gov/pubmed/37083208 http://dx.doi.org/10.1039/d3cp00328k |
work_keys_str_mv | AT wangsiwen highthroughputuvphotofragmentationstudiesofthymineandguanine AT dauletyarovyerbolat highthroughputuvphotofragmentationstudiesofthymineandguanine AT krugerpeter highthroughputuvphotofragmentationstudiesofthymineandguanine AT horkedaniela highthroughputuvphotofragmentationstudiesofthymineandguanine |