Cargando…

Evaluating vaccine allocation strategies using simulation-assisted causal modeling

We develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the coronavirus disease 2019 (COVID-19) pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modeling approach tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Kekić, Armin, Dehning, Jonas, Gresele, Luigi, von Kügelgen, Julius, Priesemann, Viola, Schölkopf, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155501/
https://www.ncbi.nlm.nih.gov/pubmed/37304758
http://dx.doi.org/10.1016/j.patter.2023.100739
_version_ 1785036342161309696
author Kekić, Armin
Dehning, Jonas
Gresele, Luigi
von Kügelgen, Julius
Priesemann, Viola
Schölkopf, Bernhard
author_facet Kekić, Armin
Dehning, Jonas
Gresele, Luigi
von Kügelgen, Julius
Priesemann, Viola
Schölkopf, Bernhard
author_sort Kekić, Armin
collection PubMed
description We develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the coronavirus disease 2019 (COVID-19) pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modeling approach that combines a compartmental infection-dynamics simulation, a coarse-grained causal model, and literature estimates for immunity waning. We compare Israel’s strategy, implemented in 2021, with counterfactual strategies such as no prioritization, prioritization of younger age groups, or a strict risk-ranked approach; we find that Israel’s implemented strategy was indeed highly effective. We also study the impact of increasing vaccine uptake for given age groups. Because of its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this by simulating a pandemic with characteristics of the Spanish flu. Our approach helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability, and spreading rates.
format Online
Article
Text
id pubmed-10155501
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101555012023-05-04 Evaluating vaccine allocation strategies using simulation-assisted causal modeling Kekić, Armin Dehning, Jonas Gresele, Luigi von Kügelgen, Julius Priesemann, Viola Schölkopf, Bernhard Patterns (N Y) Article We develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the coronavirus disease 2019 (COVID-19) pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modeling approach that combines a compartmental infection-dynamics simulation, a coarse-grained causal model, and literature estimates for immunity waning. We compare Israel’s strategy, implemented in 2021, with counterfactual strategies such as no prioritization, prioritization of younger age groups, or a strict risk-ranked approach; we find that Israel’s implemented strategy was indeed highly effective. We also study the impact of increasing vaccine uptake for given age groups. Because of its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this by simulating a pandemic with characteristics of the Spanish flu. Our approach helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability, and spreading rates. Elsevier 2023-05-03 /pmc/articles/PMC10155501/ /pubmed/37304758 http://dx.doi.org/10.1016/j.patter.2023.100739 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kekić, Armin
Dehning, Jonas
Gresele, Luigi
von Kügelgen, Julius
Priesemann, Viola
Schölkopf, Bernhard
Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title_full Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title_fullStr Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title_full_unstemmed Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title_short Evaluating vaccine allocation strategies using simulation-assisted causal modeling
title_sort evaluating vaccine allocation strategies using simulation-assisted causal modeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155501/
https://www.ncbi.nlm.nih.gov/pubmed/37304758
http://dx.doi.org/10.1016/j.patter.2023.100739
work_keys_str_mv AT kekicarmin evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling
AT dehningjonas evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling
AT greseleluigi evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling
AT vonkugelgenjulius evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling
AT priesemannviola evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling
AT scholkopfbernhard evaluatingvaccineallocationstrategiesusingsimulationassistedcausalmodeling