Cargando…
A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid
(23)Na multiple quantum filtered (MQF) rheo-NMR methods were applied to probe the molecular foundation for flow induced self-assembly in 0.5% κ-carrageenan fluid. This method is sensitive enough to utilize an endogenous sodium ion concentration of approximately 0.02%. Rheo-NMR experiments were condu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155600/ https://www.ncbi.nlm.nih.gov/pubmed/37083038 http://dx.doi.org/10.1039/d2sm01381a |
_version_ | 1785036365980762112 |
---|---|
author | Pavlovskaya, Galina E. Meersmann, Thomas |
author_facet | Pavlovskaya, Galina E. Meersmann, Thomas |
author_sort | Pavlovskaya, Galina E. |
collection | PubMed |
description | (23)Na multiple quantum filtered (MQF) rheo-NMR methods were applied to probe the molecular foundation for flow induced self-assembly in 0.5% κ-carrageenan fluid. This method is sensitive enough to utilize an endogenous sodium ion concentration of approximately 0.02%. Rheo-NMR experiments were conducted at different temperatures and shear rates to explore varying molecular dynamics of the biopolymer in the fluid under shear. The temperature in the rheo-NMR experiments was changes from 288 K to 313 K to capture transition of κ-carrageenan molecules from helices to coils. At each temperature, the fluid was also tested for flow and oscillatory shear behaviour using bulk rheometry methods. It was found that the (23)Na MQF signals were observed for the 0.5% κ-carrageenan solution only under shear and when the fluid demonstrated yielding and/or shear-thinning behaviour. At temperatures of 303 K and above, no (23)Na MQF signals were observed independent of the presence or absence of shear as the molecular phase transition to random coils occurs and the fluid becomes Newtonian. |
format | Online Article Text |
id | pubmed-10155600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-101556002023-05-04 A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid Pavlovskaya, Galina E. Meersmann, Thomas Soft Matter Chemistry (23)Na multiple quantum filtered (MQF) rheo-NMR methods were applied to probe the molecular foundation for flow induced self-assembly in 0.5% κ-carrageenan fluid. This method is sensitive enough to utilize an endogenous sodium ion concentration of approximately 0.02%. Rheo-NMR experiments were conducted at different temperatures and shear rates to explore varying molecular dynamics of the biopolymer in the fluid under shear. The temperature in the rheo-NMR experiments was changes from 288 K to 313 K to capture transition of κ-carrageenan molecules from helices to coils. At each temperature, the fluid was also tested for flow and oscillatory shear behaviour using bulk rheometry methods. It was found that the (23)Na MQF signals were observed for the 0.5% κ-carrageenan solution only under shear and when the fluid demonstrated yielding and/or shear-thinning behaviour. At temperatures of 303 K and above, no (23)Na MQF signals were observed independent of the presence or absence of shear as the molecular phase transition to random coils occurs and the fluid becomes Newtonian. The Royal Society of Chemistry 2023-04-03 /pmc/articles/PMC10155600/ /pubmed/37083038 http://dx.doi.org/10.1039/d2sm01381a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Pavlovskaya, Galina E. Meersmann, Thomas A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title | A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title_full | A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title_fullStr | A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title_full_unstemmed | A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title_short | A molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
title_sort | molecular–mechanical link in shear-induced self-assembly of a functionalized biopolymeric fluid |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155600/ https://www.ncbi.nlm.nih.gov/pubmed/37083038 http://dx.doi.org/10.1039/d2sm01381a |
work_keys_str_mv | AT pavlovskayagalinae amolecularmechanicallinkinshearinducedselfassemblyofafunctionalizedbiopolymericfluid AT meersmannthomas amolecularmechanicallinkinshearinducedselfassemblyofafunctionalizedbiopolymericfluid AT pavlovskayagalinae molecularmechanicallinkinshearinducedselfassemblyofafunctionalizedbiopolymericfluid AT meersmannthomas molecularmechanicallinkinshearinducedselfassemblyofafunctionalizedbiopolymericfluid |