Cargando…
Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
[Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing pero...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156082/ https://www.ncbi.nlm.nih.gov/pubmed/34859993 http://dx.doi.org/10.1021/acsnano.1c05642 |
_version_ | 1785036466372476928 |
---|---|
author | Wieliczka, Brian M. Márquez, José A. Bothwell, Alexandra M. Zhao, Qian Moot, Taylor VanSant, Kaitlyn T. Ferguson, Andrew J. Unold, Thomas Kuciauskas, Darius Luther, Joseph M. |
author_facet | Wieliczka, Brian M. Márquez, José A. Bothwell, Alexandra M. Zhao, Qian Moot, Taylor VanSant, Kaitlyn T. Ferguson, Andrew J. Unold, Thomas Kuciauskas, Darius Luther, Joseph M. |
author_sort | Wieliczka, Brian M. |
collection | PubMed |
description | [Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (V(OC)) in comparison. Further understanding of the V(OC) attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the V(OC) in CsPbI(3) PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the V(OC) and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs(+) with FA(+) maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the V(OC) deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer. |
format | Online Article Text |
id | pubmed-10156082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101560822023-05-04 Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics Wieliczka, Brian M. Márquez, José A. Bothwell, Alexandra M. Zhao, Qian Moot, Taylor VanSant, Kaitlyn T. Ferguson, Andrew J. Unold, Thomas Kuciauskas, Darius Luther, Joseph M. ACS Nano [Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (V(OC)) in comparison. Further understanding of the V(OC) attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the V(OC) in CsPbI(3) PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the V(OC) and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs(+) with FA(+) maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the V(OC) deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer. American Chemical Society 2021-12-03 /pmc/articles/PMC10156082/ /pubmed/34859993 http://dx.doi.org/10.1021/acsnano.1c05642 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Wieliczka, Brian M. Márquez, José A. Bothwell, Alexandra M. Zhao, Qian Moot, Taylor VanSant, Kaitlyn T. Ferguson, Andrew J. Unold, Thomas Kuciauskas, Darius Luther, Joseph M. Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics |
title | Probing
the Origin of the Open Circuit Voltage in
Perovskite Quantum Dot Photovoltaics |
title_full | Probing
the Origin of the Open Circuit Voltage in
Perovskite Quantum Dot Photovoltaics |
title_fullStr | Probing
the Origin of the Open Circuit Voltage in
Perovskite Quantum Dot Photovoltaics |
title_full_unstemmed | Probing
the Origin of the Open Circuit Voltage in
Perovskite Quantum Dot Photovoltaics |
title_short | Probing
the Origin of the Open Circuit Voltage in
Perovskite Quantum Dot Photovoltaics |
title_sort | probing
the origin of the open circuit voltage in
perovskite quantum dot photovoltaics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156082/ https://www.ncbi.nlm.nih.gov/pubmed/34859993 http://dx.doi.org/10.1021/acsnano.1c05642 |
work_keys_str_mv | AT wieliczkabrianm probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT marquezjosea probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT bothwellalexandram probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT zhaoqian probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT moottaylor probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT vansantkaitlynt probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT fergusonandrewj probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT unoldthomas probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT kuciauskasdarius probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics AT lutherjosephm probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics |