Cargando…

Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics

[Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing pero...

Descripción completa

Detalles Bibliográficos
Autores principales: Wieliczka, Brian M., Márquez, José A., Bothwell, Alexandra M., Zhao, Qian, Moot, Taylor, VanSant, Kaitlyn T., Ferguson, Andrew J., Unold, Thomas, Kuciauskas, Darius, Luther, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156082/
https://www.ncbi.nlm.nih.gov/pubmed/34859993
http://dx.doi.org/10.1021/acsnano.1c05642
_version_ 1785036466372476928
author Wieliczka, Brian M.
Márquez, José A.
Bothwell, Alexandra M.
Zhao, Qian
Moot, Taylor
VanSant, Kaitlyn T.
Ferguson, Andrew J.
Unold, Thomas
Kuciauskas, Darius
Luther, Joseph M.
author_facet Wieliczka, Brian M.
Márquez, José A.
Bothwell, Alexandra M.
Zhao, Qian
Moot, Taylor
VanSant, Kaitlyn T.
Ferguson, Andrew J.
Unold, Thomas
Kuciauskas, Darius
Luther, Joseph M.
author_sort Wieliczka, Brian M.
collection PubMed
description [Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (V(OC)) in comparison. Further understanding of the V(OC) attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the V(OC) in CsPbI(3) PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the V(OC) and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs(+) with FA(+) maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the V(OC) deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.
format Online
Article
Text
id pubmed-10156082
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101560822023-05-04 Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics Wieliczka, Brian M. Márquez, José A. Bothwell, Alexandra M. Zhao, Qian Moot, Taylor VanSant, Kaitlyn T. Ferguson, Andrew J. Unold, Thomas Kuciauskas, Darius Luther, Joseph M. ACS Nano [Image: see text] Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (V(OC)) in comparison. Further understanding of the V(OC) attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the V(OC) in CsPbI(3) PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the V(OC) and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs(+) with FA(+) maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the V(OC) deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer. American Chemical Society 2021-12-03 /pmc/articles/PMC10156082/ /pubmed/34859993 http://dx.doi.org/10.1021/acsnano.1c05642 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Wieliczka, Brian M.
Márquez, José A.
Bothwell, Alexandra M.
Zhao, Qian
Moot, Taylor
VanSant, Kaitlyn T.
Ferguson, Andrew J.
Unold, Thomas
Kuciauskas, Darius
Luther, Joseph M.
Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title_full Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title_fullStr Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title_full_unstemmed Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title_short Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics
title_sort probing the origin of the open circuit voltage in perovskite quantum dot photovoltaics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156082/
https://www.ncbi.nlm.nih.gov/pubmed/34859993
http://dx.doi.org/10.1021/acsnano.1c05642
work_keys_str_mv AT wieliczkabrianm probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT marquezjosea probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT bothwellalexandram probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT zhaoqian probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT moottaylor probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT vansantkaitlynt probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT fergusonandrewj probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT unoldthomas probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT kuciauskasdarius probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics
AT lutherjosephm probingtheoriginoftheopencircuitvoltageinperovskitequantumdotphotovoltaics