Cargando…
Water-stable, biocompatible, and highly luminescent perovskite nanocrystals-embedded fiber-based paper for anti-counterfeiting applications
In this study, we present a promising and facile approach toward the fabrication of non-toxic, water-stable, and eco-friendly luminescent fiber paper composed of polycaprolactone (PCL) polymer and CsPbBr(3)@SiO(2) core–shell perovskite nanocrystals. PCL-perovskite fiber paper was fabricated using a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156878/ https://www.ncbi.nlm.nih.gov/pubmed/37133613 http://dx.doi.org/10.1186/s40580-023-00366-6 |
Sumario: | In this study, we present a promising and facile approach toward the fabrication of non-toxic, water-stable, and eco-friendly luminescent fiber paper composed of polycaprolactone (PCL) polymer and CsPbBr(3)@SiO(2) core–shell perovskite nanocrystals. PCL-perovskite fiber paper was fabricated using a conventional electrospinning process. Transmission electron microscopy (TEM) clearly revealed incorporation of CsPbBr(3)@SiO(2) nanocrystals in the fibers, while scanning electron microscopy (SEM) demonstrated that incorporation of CsPbBr(3)@SiO(2) nanocrystals did not affect the surface and diameter of the PCL-perovskite fibers. In addition, thermogravimetric analysis (TGA) and contact angle measurements have demonstrated that the PCL-perovskite fibers exhibit excellent thermal and water stability. The fabricated PCL-perovskite fiber paper exhibited a bright green emission centered at 520 nm upon excitation by ultra-violet (UV) light (374 nm). We have demonstrated that fluorescent PCL-perovskite fiber paper is a promising candidate for anti-counterfeiting applications because various patterns can be printed on the paper, which only become visible after exposure to UV light at 365 nm. Cell proliferation tests revealed that the PCL-perovskite fibers are cytocompatibility. Consequently, they may be suitable for biocompatible anti-counterfeiting. The present study reveals that PCL-perovskite fibers may pave way toward next generation biomedical probe and anti-counterfeiting applications. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40580-023-00366-6. |
---|