Cargando…
BIO-CXRNET: a robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest X-ray images and clinical data
Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy du...
Autores principales: | Rahman, Tawsifur, Chowdhury, Muhammad E. H., Khandakar, Amith, Mahbub, Zaid Bin, Hossain, Md Sakib Abrar, Alhatou, Abraham, Abdalla, Eynas, Muthiyal, Sreekumar, Islam, Khandaker Farzana, Kashem, Saad Bin Abul, Khan, Muhammad Salman, Zughaier, Susu M., Hossain, Maqsud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157130/ https://www.ncbi.nlm.nih.gov/pubmed/37362565 http://dx.doi.org/10.1007/s00521-023-08606-w |
Ejemplares similares
-
Prognostic Model of ICU Admission Risk in Patients with COVID-19 Infection Using Machine Learning
por: Islam, Khandaker Reajul, et al.
Publicado: (2022) -
QCovSML: A reliable COVID-19 detection system using CBC biomarkers by a stacking machine learning model
por: Rahman, Tawsifur, et al.
Publicado: (2022) -
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images
por: Rahman, Tawsifur, et al.
Publicado: (2021) -
PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data
por: Abir, Farhan Fuad, et al.
Publicado: (2022) -
Genomic landscape of prominent XDR Acinetobacter clonal complexes from Dhaka, Bangladesh
por: Rahman, Aura, et al.
Publicado: (2022)