Cargando…
The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage
The honeybees are the most important pollinator in the production of crops and fresh produce. Temperature affects the survival of honeybees, and determines the quality of their development, which is of great significance for beekeeping production. Yet, little was known about how does low temperature...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157483/ https://www.ncbi.nlm.nih.gov/pubmed/37153230 http://dx.doi.org/10.3389/fphys.2023.1173808 |
_version_ | 1785036763646918656 |
---|---|
author | Zhu, Chenyu Li, Han Xu, Xinjian Zhou, Shujing Zhou, Bingfeng Li, Xiang Xu, Hongzhi Tian, Yuanmingyue Wang, Yanxin Chu, Yu Zhang, Xianlan Zhu, Xiangjie |
author_facet | Zhu, Chenyu Li, Han Xu, Xinjian Zhou, Shujing Zhou, Bingfeng Li, Xiang Xu, Hongzhi Tian, Yuanmingyue Wang, Yanxin Chu, Yu Zhang, Xianlan Zhu, Xiangjie |
author_sort | Zhu, Chenyu |
collection | PubMed |
description | The honeybees are the most important pollinator in the production of crops and fresh produce. Temperature affects the survival of honeybees, and determines the quality of their development, which is of great significance for beekeeping production. Yet, little was known about how does low temperature stress during development stage cause bee death and any sub-lethal effect on subsequent. Early pupal stage is the most sensitive stage to low temperature in pupal stage. In this study, early pupal broods were exposed to 20°C for 12, 16, 24, and 48 h, followed by incubation at 35°C until emergence. We found that 48 h of low temperature duration cause 70% of individual bees to die. Although the mortality at 12 and 16 h seems not very high, the association learning ability of the surviving individuals was greatly affected. The brain slices of honeybees showed that low temperature treatment could cause the brain development of honeybees to almost stop. Gene expression profiles between low temperature treatment groups (T24, T48) and the control revealed that 1,267 and 1,174 genes were differentially expressed respectively. Functional enrichment analysis of differentially expressed genes showed that the differential expression of Map3k9, Dhrs4, and Sod-2 genes on MAPK and peroxisome signaling pathway caused oxidative damage to the honeybee head. On the FoxO signal pathway, InsR and FoxO were upregulated, and JNK, Akt, and Bsk were downregulated; and on the insect hormone synthesis signal pathway, Phm and Spo genes were downregulated. Therefore, we speculate that low temperature stress affects hormone regulation. It was detected that the pathways related to the nervous system were Cholinergic synapse, Dopaminergic synapse, GABAergic synapse, Glutamatergic synapse, Serotonergic synapse, Neurotrophin signaling pathway, and Synaptic vesicle cycle. This implies that the synaptic development of honeybees is quite possibly greatly affected by low temperature stress. Understanding how low temperature stress affects the physiology of bee brain development and how it affects bee behavior provide a theoretical foundation for a deeper comprehension of the temperature adaptation mechanism that underlies the “stenothermic” development of social insects, and help to improve honeybee management strategies to ensure the healthy of colony. |
format | Online Article Text |
id | pubmed-10157483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101574832023-05-05 The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage Zhu, Chenyu Li, Han Xu, Xinjian Zhou, Shujing Zhou, Bingfeng Li, Xiang Xu, Hongzhi Tian, Yuanmingyue Wang, Yanxin Chu, Yu Zhang, Xianlan Zhu, Xiangjie Front Physiol Physiology The honeybees are the most important pollinator in the production of crops and fresh produce. Temperature affects the survival of honeybees, and determines the quality of their development, which is of great significance for beekeeping production. Yet, little was known about how does low temperature stress during development stage cause bee death and any sub-lethal effect on subsequent. Early pupal stage is the most sensitive stage to low temperature in pupal stage. In this study, early pupal broods were exposed to 20°C for 12, 16, 24, and 48 h, followed by incubation at 35°C until emergence. We found that 48 h of low temperature duration cause 70% of individual bees to die. Although the mortality at 12 and 16 h seems not very high, the association learning ability of the surviving individuals was greatly affected. The brain slices of honeybees showed that low temperature treatment could cause the brain development of honeybees to almost stop. Gene expression profiles between low temperature treatment groups (T24, T48) and the control revealed that 1,267 and 1,174 genes were differentially expressed respectively. Functional enrichment analysis of differentially expressed genes showed that the differential expression of Map3k9, Dhrs4, and Sod-2 genes on MAPK and peroxisome signaling pathway caused oxidative damage to the honeybee head. On the FoxO signal pathway, InsR and FoxO were upregulated, and JNK, Akt, and Bsk were downregulated; and on the insect hormone synthesis signal pathway, Phm and Spo genes were downregulated. Therefore, we speculate that low temperature stress affects hormone regulation. It was detected that the pathways related to the nervous system were Cholinergic synapse, Dopaminergic synapse, GABAergic synapse, Glutamatergic synapse, Serotonergic synapse, Neurotrophin signaling pathway, and Synaptic vesicle cycle. This implies that the synaptic development of honeybees is quite possibly greatly affected by low temperature stress. Understanding how low temperature stress affects the physiology of bee brain development and how it affects bee behavior provide a theoretical foundation for a deeper comprehension of the temperature adaptation mechanism that underlies the “stenothermic” development of social insects, and help to improve honeybee management strategies to ensure the healthy of colony. Frontiers Media S.A. 2023-04-20 /pmc/articles/PMC10157483/ /pubmed/37153230 http://dx.doi.org/10.3389/fphys.2023.1173808 Text en Copyright © 2023 Zhu, Li, Xu, Zhou, Zhou, Li, Xu, Tian, Wang, Chu, Zhang and Zhu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Zhu, Chenyu Li, Han Xu, Xinjian Zhou, Shujing Zhou, Bingfeng Li, Xiang Xu, Hongzhi Tian, Yuanmingyue Wang, Yanxin Chu, Yu Zhang, Xianlan Zhu, Xiangjie The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title | The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title_full | The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title_fullStr | The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title_full_unstemmed | The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title_short | The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
title_sort | mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157483/ https://www.ncbi.nlm.nih.gov/pubmed/37153230 http://dx.doi.org/10.3389/fphys.2023.1173808 |
work_keys_str_mv | AT zhuchenyu themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT lihan themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT xuxinjian themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhoushujing themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhoubingfeng themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT lixiang themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT xuhongzhi themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT tianyuanmingyue themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT wangyanxin themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT chuyu themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhangxianlan themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhuxiangjie themushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhuchenyu mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT lihan mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT xuxinjian mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhoushujing mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhoubingfeng mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT lixiang mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT xuhongzhi mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT tianyuanmingyue mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT wangyanxin mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT chuyu mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhangxianlan mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage AT zhuxiangjie mushroombodydevelopmentandlearningabilityofadulthoneybeesareinfluencedbycoldexposureduringtheirearlypupalstage |