Cargando…
Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation
Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157521/ https://www.ncbi.nlm.nih.gov/pubmed/36331295 http://dx.doi.org/10.3724/abbs.2022161 |
_version_ | 1785036770345222144 |
---|---|
author | Hu, Jiachun Deng, Yan Ding, Tingbo Dong, Jibin Liang, Yuning Lou, Bin |
author_facet | Hu, Jiachun Deng, Yan Ding, Tingbo Dong, Jibin Liang, Yuning Lou, Bin |
author_sort | Hu, Jiachun |
collection | PubMed |
description | Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation. |
format | Online Article Text |
id | pubmed-10157521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101575212023-05-05 Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation Hu, Jiachun Deng, Yan Ding, Tingbo Dong, Jibin Liang, Yuning Lou, Bin Acta Biochim Biophys Sin (Shanghai) Research Article Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation. Oxford University Press 2022-11-02 /pmc/articles/PMC10157521/ /pubmed/36331295 http://dx.doi.org/10.3724/abbs.2022161 Text en © The Author(s) 2021. 0 https://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/). |
spellingShingle | Research Article Hu, Jiachun Deng, Yan Ding, Tingbo Dong, Jibin Liang, Yuning Lou, Bin Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title | Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title_full | Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title_fullStr | Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title_full_unstemmed | Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title_short | Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation: Lpcat3 deficiency promotes adipocyte inflammation |
title_sort | lpcat3 deficiency promotes palmitic acid-induced 3t3-l1 mature adipocyte inflammation through enhanced ros generation: lpcat3 deficiency promotes adipocyte inflammation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157521/ https://www.ncbi.nlm.nih.gov/pubmed/36331295 http://dx.doi.org/10.3724/abbs.2022161 |
work_keys_str_mv | AT hujiachun lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation AT dengyan lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation AT dingtingbo lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation AT dongjibin lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation AT liangyuning lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation AT loubin lpcat3deficiencypromotespalmiticacidinduced3t3l1matureadipocyteinflammationthroughenhancedrosgenerationlpcat3deficiencypromotesadipocyteinflammation |