Cargando…
Anwendungsbereiche von künstlicher Intelligenz im Kontext von One Health mit Fokus auf antimikrobielle Resistenzen
Societal health is facing a number of new challenges, largely driven by ongoing climate change, demographic ageing, and globalization. The One Health approach links human, animal, and environmental sectors with the goal of achieving a holistic understanding of health in general. To implement this ap...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157576/ https://www.ncbi.nlm.nih.gov/pubmed/37140603 http://dx.doi.org/10.1007/s00103-023-03707-2 |
Sumario: | Societal health is facing a number of new challenges, largely driven by ongoing climate change, demographic ageing, and globalization. The One Health approach links human, animal, and environmental sectors with the goal of achieving a holistic understanding of health in general. To implement this approach, diverse and heterogeneous data streams and types must be combined and analyzed. To this end, artificial intelligence (AI) techniques offer new opportunities for cross-sectoral assessment of current and future health threats. Using the example of antimicrobial resistance as a global threat in the One Health context, we demonstrate potential applications and challenges of AI techniques. This article provides an overview of different applications of AI techniques in the context of One Health and highlights their challenges. Using the spread of antimicrobial resistance (AMR), an increasing global threat, as an example, existing and future AI-based approaches to AMR containment and prevention are described. These range from novel drug development and personalized therapy, to targeted monitoring of antibiotic use in livestock and agriculture, to comprehensive environmental surveillance. |
---|