Cargando…

Bézier Curve Method to Compute Various Meniscus Shapes

[Image: see text] This paper is an extension of our earlier paper in which it was shown that the meniscus shape in a cylindrical capillary could be computed by solving the Young–Laplace equation via optimization of a Bézier curve. This work extends the previous work by demonstrating that the method...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Kira, Matsuura, Takeshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157662/
https://www.ncbi.nlm.nih.gov/pubmed/37151521
http://dx.doi.org/10.1021/acsomega.3c00620
Descripción
Sumario:[Image: see text] This paper is an extension of our earlier paper in which it was shown that the meniscus shape in a cylindrical capillary could be computed by solving the Young–Laplace equation via optimization of a Bézier curve. This work extends the previous work by demonstrating that the method is applicable to predict the meniscus shape not only in a cylindrical capillary but also in other cases, such as at a tilted plate, between two plates, and for a sessile drop. Numerous works have attempted previously to solve the Young–Laplace equation, and their results all agree with this paper’s validating its method. All the preceding approaches, however, used special techniques to solve the differential equation, while the Bézier curve method proposed in this work is more simple, which allows it to maintain greater computational simplicity. Moreover, the Bézier curve method can be applied to solve many other different differential equations in the same way as shown in this work. The effect of the Bézier curve degree on the precision of prediction was also thoroughly investigated. It was found that the 4th degree Bézier curve was required to predict the meniscus shape precisely in a cylindrical capillary, against a tilted plate, and between two plates, while the 5th degree was required for the shape of the sessile drop.