Cargando…
Review of single-cell RNA-seq data clustering for cell-type identification and characterization
In recent years, the advances in single-cell RNA-seq techniques have enabled us to perform large-scale transcriptomic profiling at single-cell resolution in a high-throughput manner. Unsupervised learning such as data clustering has become the central component to identify and characterize novel cel...
Autores principales: | Zhang, Shixiong, Li, Xiangtao, Lin, Jiecong, Lin, Qiuzhen, Wong, Ka-Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158997/ https://www.ncbi.nlm.nih.gov/pubmed/36737104 http://dx.doi.org/10.1261/rna.078965.121 |
Ejemplares similares
-
Uncovering the key dimensions of high-throughput biomolecular data using deep learning
por: Zhang, Shixiong, et al.
Publicado: (2020) -
Enabling Single‐Cell Drug Response Annotations from Bulk RNA‐Seq Using SCAD
por: Zheng, Zetian, et al.
Publicado: (2023) -
Heterodimeric DNA motif synthesis and validations
por: Wong, Ka-Chun, et al.
Publicado: (2019) -
scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections
por: Bian, Chuang, et al.
Publicado: (2022) -
A Lightweight Framework For Chromatin Loop Detection at the Single‐Cell Level
por: Wang, Fuzhou, et al.
Publicado: (2023)