Cargando…
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
Machine learning (ML) models are used in clinical metabolomics studies most notably for biomarker discoveries, to identify metabolites that discriminate between a case and control group. To improve understanding of the underlying biomedical problem and to bolster confidence in these discoveries, mod...
Autor principal: | Bifarin, Olatomiwa O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159207/ https://www.ncbi.nlm.nih.gov/pubmed/37141218 http://dx.doi.org/10.1371/journal.pone.0284315 |
Ejemplares similares
-
Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer
por: Ngo, Anh Quan, et al.
Publicado: (2023) -
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
por: Ogami, Chika, et al.
Publicado: (2021) -
Automated machine learning and explainable AI (AutoML-XAI) for metabolomics: improving cancer diagnostics
por: Bifarin, Olatomiwa O., et al.
Publicado: (2023) -
Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning
por: Chowdhury, Shihab Uddin, et al.
Publicado: (2022) -
Interpretable prediction of cardiopulmonary complications after non-small cell lung cancer surgery based on machine learning and SHapley additive exPlanations
por: Zhai, Yihai, et al.
Publicado: (2023)