Cargando…
CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159654/ https://www.ncbi.nlm.nih.gov/pubmed/37079732 http://dx.doi.org/10.1093/bioinformatics/btad201 |
_version_ | 1785037146908786688 |
---|---|
author | Pernice, Simone Sirovich, Roberta Grassi, Elena Viviani, Marco Ferri, Martina Sassi, Francesco Alessandrì, Luca Tortarolo, Dora Calogero, Raffaele A Trusolino, Livio Bertotti, Andrea Beccuti, Marco Olivero, Martina Cordero, Francesca |
author_facet | Pernice, Simone Sirovich, Roberta Grassi, Elena Viviani, Marco Ferri, Martina Sassi, Francesco Alessandrì, Luca Tortarolo, Dora Calogero, Raffaele A Trusolino, Livio Bertotti, Andrea Beccuti, Marco Olivero, Martina Cordero, Francesca |
author_sort | Pernice, Simone |
collection | PubMed |
description | MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1. |
format | Online Article Text |
id | pubmed-10159654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101596542023-05-05 CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system Pernice, Simone Sirovich, Roberta Grassi, Elena Viviani, Marco Ferri, Martina Sassi, Francesco Alessandrì, Luca Tortarolo, Dora Calogero, Raffaele A Trusolino, Livio Bertotti, Andrea Beccuti, Marco Olivero, Martina Cordero, Francesca Bioinformatics Original Paper MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1. Oxford University Press 2023-04-20 /pmc/articles/PMC10159654/ /pubmed/37079732 http://dx.doi.org/10.1093/bioinformatics/btad201 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Pernice, Simone Sirovich, Roberta Grassi, Elena Viviani, Marco Ferri, Martina Sassi, Francesco Alessandrì, Luca Tortarolo, Dora Calogero, Raffaele A Trusolino, Livio Bertotti, Andrea Beccuti, Marco Olivero, Martina Cordero, Francesca CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title | CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title_full | CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title_fullStr | CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title_full_unstemmed | CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title_short | CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system |
title_sort | connector, fitting and clustering of longitudinal data to reveal a new risk stratification system |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159654/ https://www.ncbi.nlm.nih.gov/pubmed/37079732 http://dx.doi.org/10.1093/bioinformatics/btad201 |
work_keys_str_mv | AT pernicesimone connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT sirovichroberta connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT grassielena connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT vivianimarco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT ferrimartina connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT sassifrancesco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT alessandriluca connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT tortarolodora connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT calogeroraffaelea connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT trusolinolivio connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT bertottiandrea connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT beccutimarco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT oliveromartina connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem AT corderofrancesca connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem |