Cargando…

CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system

MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering...

Descripción completa

Detalles Bibliográficos
Autores principales: Pernice, Simone, Sirovich, Roberta, Grassi, Elena, Viviani, Marco, Ferri, Martina, Sassi, Francesco, Alessandrì, Luca, Tortarolo, Dora, Calogero, Raffaele A, Trusolino, Livio, Bertotti, Andrea, Beccuti, Marco, Olivero, Martina, Cordero, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159654/
https://www.ncbi.nlm.nih.gov/pubmed/37079732
http://dx.doi.org/10.1093/bioinformatics/btad201
_version_ 1785037146908786688
author Pernice, Simone
Sirovich, Roberta
Grassi, Elena
Viviani, Marco
Ferri, Martina
Sassi, Francesco
Alessandrì, Luca
Tortarolo, Dora
Calogero, Raffaele A
Trusolino, Livio
Bertotti, Andrea
Beccuti, Marco
Olivero, Martina
Cordero, Francesca
author_facet Pernice, Simone
Sirovich, Roberta
Grassi, Elena
Viviani, Marco
Ferri, Martina
Sassi, Francesco
Alessandrì, Luca
Tortarolo, Dora
Calogero, Raffaele A
Trusolino, Livio
Bertotti, Andrea
Beccuti, Marco
Olivero, Martina
Cordero, Francesca
author_sort Pernice, Simone
collection PubMed
description MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.
format Online
Article
Text
id pubmed-10159654
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101596542023-05-05 CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system Pernice, Simone Sirovich, Roberta Grassi, Elena Viviani, Marco Ferri, Martina Sassi, Francesco Alessandrì, Luca Tortarolo, Dora Calogero, Raffaele A Trusolino, Livio Bertotti, Andrea Beccuti, Marco Olivero, Martina Cordero, Francesca Bioinformatics Original Paper MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1. Oxford University Press 2023-04-20 /pmc/articles/PMC10159654/ /pubmed/37079732 http://dx.doi.org/10.1093/bioinformatics/btad201 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Pernice, Simone
Sirovich, Roberta
Grassi, Elena
Viviani, Marco
Ferri, Martina
Sassi, Francesco
Alessandrì, Luca
Tortarolo, Dora
Calogero, Raffaele A
Trusolino, Livio
Bertotti, Andrea
Beccuti, Marco
Olivero, Martina
Cordero, Francesca
CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title_full CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title_fullStr CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title_full_unstemmed CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title_short CONNECTOR, fitting and clustering of longitudinal data to reveal a new risk stratification system
title_sort connector, fitting and clustering of longitudinal data to reveal a new risk stratification system
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159654/
https://www.ncbi.nlm.nih.gov/pubmed/37079732
http://dx.doi.org/10.1093/bioinformatics/btad201
work_keys_str_mv AT pernicesimone connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT sirovichroberta connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT grassielena connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT vivianimarco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT ferrimartina connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT sassifrancesco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT alessandriluca connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT tortarolodora connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT calogeroraffaelea connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT trusolinolivio connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT bertottiandrea connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT beccutimarco connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT oliveromartina connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem
AT corderofrancesca connectorfittingandclusteringoflongitudinaldatatorevealanewriskstratificationsystem