Cargando…

Design of electromagnetic metasurface using two dimensional crystal nets

Metasurfaces are of great interest as they exhibit unique electromagnetic properties. Currently, metasurface design focuses on generating new meta-atoms and their combinations. Here a topological database, reticular chemistry structure resource (RCSR), is introduced to bring a new dimension and more...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Jie, Zhang, Xiaohong, Guo, Ying, Zhang, Rui-Zhi, Guo, Meng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160015/
https://www.ncbi.nlm.nih.gov/pubmed/37142642
http://dx.doi.org/10.1038/s41598-023-32660-y
Descripción
Sumario:Metasurfaces are of great interest as they exhibit unique electromagnetic properties. Currently, metasurface design focuses on generating new meta-atoms and their combinations. Here a topological database, reticular chemistry structure resource (RCSR), is introduced to bring a new dimension and more possibilities for metasurface design. RCSR has over 200 two-dimensional crystal nets, among which 72 are identified as suitable for metasurface design. Using a simple metallic cross as the metaatom, 72 metasurfaces are constructed from the atom positions and lattice vectors of the crystal nets templates. The transmission curves of all the metasurfaces are calculated using the finite-difference time-domain method. The calculated transmission curves have good diversity, showing that the crystal nets approach is a new engineering dimension for metasurface design. Three clusters are found for the calculated curves using the K-means algorithm and principal component analysis. The structure–property relationship between metasurface topology and transmission curve is investigated, but no simple descriptor has been found, indicating that further work is still needed. The crystal net design approach developed in this work can be extended to three-dimensional design and other types of metamaterials like mechanical materials.