Cargando…
Morphodynamical cell state description via live-cell imaging trajectory embedding
Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of “trajectory embedding” to analyze cellular behavior using morphological feature traject...
Autores principales: | Copperman, Jeremy, Gross, Sean M., Chang, Young Hwan, Heiser, Laura M., Zuckerman, Daniel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160022/ https://www.ncbi.nlm.nih.gov/pubmed/37142678 http://dx.doi.org/10.1038/s42003-023-04837-8 |
Ejemplares similares
-
DynaMorph: self-supervised learning of morphodynamic states of live cells
por: Wu, Zhenqin, et al.
Publicado: (2022) -
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
por: Jang, Junbong, et al.
Publicado: (2022) -
Red Blood Cell Morphodynamics in Patients with Polycythemia Vera and Stroke
por: Kuznetsova, Polina I., et al.
Publicado: (2022) -
Label-free optical interferometric microscopy to characterize morphodynamics in living plants
por: Ebrahimi, Samira, et al.
Publicado: (2023) -
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition
por: Ma, Xiao, et al.
Publicado: (2018)