Cargando…
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
Graph neural networks (GNNs) have been widely used in molecular property prediction, but explaining their black-box predictions is still a challenge. Most existing explanation methods for GNNs in chemistry focus on attributing model predictions to individual nodes, edges or fragments that are not ne...
Autores principales: | Wu, Zhenxing, Wang, Jike, Du, Hongyan, Jiang, Dejun, Kang, Yu, Li, Dan, Pan, Peichen, Deng, Yafeng, Cao, Dongsheng, Hsieh, Chang-Yu, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160109/ https://www.ncbi.nlm.nih.gov/pubmed/37142585 http://dx.doi.org/10.1038/s41467-023-38192-3 |
Ejemplares similares
-
Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models
por: Jiang, Dejun, et al.
Publicado: (2021) -
Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network
por: Du, Hongyan, et al.
Publicado: (2022) -
A flexible data-free framework for structure-based de novo drug design with reinforcement learning
por: Du, Hongyan, et al.
Publicado: (2023) -
MetalProGNet: a structure-based deep graph model for metalloprotein–ligand interaction predictions
por: Jiang, Dejun, et al.
Publicado: (2023) -
ReMODE: a deep learning-based web server for target-specific drug design
por: Wang, Mingyang, et al.
Publicado: (2022)