Cargando…
Deep learning-based prediction of intra-cardiac blood flow in long-axis cine magnetic resonance imaging
Purpose: We aimed to design and evaluate a deep learning-based method to automatically predict the time-varying in-plane blood flow velocity within the cardiac cavities in long-axis cine MRI, validated against 4D flow. Methods: A convolutional neural network (CNN) was implemented, taking cine MRI as...
Autores principales: | Sun, Xiaowu, Cheng, Li-Hsin, Plein, Sven, Garg, Pankaj, Moghari, Mehdi H., van der Geest, Rob J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160163/ https://www.ncbi.nlm.nih.gov/pubmed/36763209 http://dx.doi.org/10.1007/s10554-023-02804-2 |
Ejemplares similares
-
SAUN: Stack attention U‐Net for left ventricle segmentation from cardiac cine magnetic resonance imaging
por: Sun, Xiaowu, et al.
Publicado: (2021) -
Clinical applications of intra-cardiac four-dimensional flow cardiovascular magnetic resonance: A systematic review
por: Crandon, Saul, et al.
Publicado: (2017) -
Automated segmentation of 3D cine cardiovascular magnetic resonance imaging
por: Tayebi Arasteh, Soroosh, et al.
Publicado: (2023) -
Acute intra-cavity 4D flow cardiovascular magnetic resonance predicts long-term adverse remodelling following ST-elevation myocardial infarction
por: Das, Arka, et al.
Publicado: (2022) -
Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI
por: van der Geest, Rob J., et al.
Publicado: (2016)