Cargando…
Generative adversarial networks to infer velocity components in rotating turbulent flows
ABSTRACT: Inference problems for two-dimensional snapshots of rotating turbulent flows are studied. We perform a systematic quantitative benchmark of point-wise and statistical reconstruction capabilities of the linear Extended Proper Orthogonal Decomposition (EPOD) method, a nonlinear Convolutional...
Autores principales: | Li, Tianyi, Buzzicotti, Michele, Biferale, Luca, Bonaccorso, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160208/ https://www.ncbi.nlm.nih.gov/pubmed/37140827 http://dx.doi.org/10.1140/epje/s10189-023-00286-7 |
Ejemplares similares
-
Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement
por: Xue, Xiao, et al.
Publicado: (2021) -
Application of superstatistical analysis on fluctuant surface shear in particle-laden turbulence boundary layer
por: Li, Guang, et al.
Publicado: (2022) -
Evolution of channel flow and Darcy’s law beyond the critical Reynolds number
por: Deng, Xiaohui, et al.
Publicado: (2023) -
From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats
por: Ender, Hendrik, et al.
Publicado: (2021)