Cargando…
Machine learning models to predict micronutrient profile in food after processing
The information on nutritional profile of cooked foods is important to both food manufacturers and consumers, and a major challenge to obtaining precise information is the inherent variation in composition across biological samples of any given raw ingredient. The ideal solution would address precis...
Autores principales: | Naravane, Tarini, Tagkopoulos, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160345/ https://www.ncbi.nlm.nih.gov/pubmed/37151381 http://dx.doi.org/10.1016/j.crfs.2023.100500 |
Ejemplares similares
-
Using Word Embeddings to Learn a Better Food Ontology
por: Youn, Jason, et al.
Publicado: (2020) -
Ontological how and why: action and objective of planned processes in the food domain
por: Dooley, Damion, et al.
Publicado: (2023) -
Application of machine learning in rheumatic disease research
por: Kim, Ki-Jo, et al.
Publicado: (2019) -
Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach
por: Razavi, Rouzbeh, et al.
Publicado: (2023) -
Microbial Forensics: Predicting Phenotypic Characteristics and Environmental Conditions from Large-Scale Gene Expression Profiles
por: Kim, Minseung, et al.
Publicado: (2015)