Cargando…
Knee anatomic geometry accurately predicts risk of anterior cruciate ligament rupture
BACKGROUND: Certain anatomical characteristics of the knee have potential relationships with the risk of anterior cruciate ligament (ACL) rupture. There remains a need for stronger evidence using arthroscopy as well as radiological imaging to accurately clarify these relationships. PURPOSE: To compa...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160399/ https://www.ncbi.nlm.nih.gov/pubmed/36755362 http://dx.doi.org/10.1177/02841851231152329 |
Sumario: | BACKGROUND: Certain anatomical characteristics of the knee have potential relationships with the risk of anterior cruciate ligament (ACL) rupture. There remains a need for stronger evidence using arthroscopy as well as radiological imaging to accurately clarify these relationships. PURPOSE: To compare the anatomic geometry of the knee joint between patients with and without ACL ruptures. MATERIAL AND METHODS: Case-controlled study of patients with arthroscopically confirmed ACL ruptures (ACL group) compared to patients with arthroscopically confirmed normal ACLs (control group). Magnetic resonance imaging scans were assessed for a total of 14 quantitative radiological variables including medial and lateral tibial slope angles (bone and cartilage measurements), meniscal height, femoral width, intercondylar notch width and tibial depth. RESULTS: A total of 105 patients were included in the study, 55 in the ACL group and 50 in the control group. There was a significant difference (P < 0.05) of most of the radiological measurements between the two groups. There was also a significant difference (P < 0.05) when comparing the variables between sexes. Multiple logistic regression analysis produced a mathematical model utilizing all the radiological measurements with 92.6% classification accuracy in predicating an ACL rupture with the medial tibial slope angle being the strongest predicator variable (odds ratio = 8.97, P = 0.011). CONCLUSION: Greater postero-inferior directed slope measurements of bone and cartilage in both the lateral and medial compartments with a narrower intercondylar notch width increase the risk of ACL rupture. Mathematical modelling can accurately predict the risk of ACL rupture. |
---|