Cargando…

The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina

OBJECTIVES: This study aimed to ascertain if the radiomics features of epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) based on coronary computed tomography angiography (CCTA) could identify non-ST-segment elevation myocardial infarction (NSTEMI) from unstable angina (UA). MAT...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhenguo, Zhang, Jianhua, Zhang, Anxiaonan, Sun, Yu, Su, Mengwei, You, Hongrui, Zhang, Rongrong, Jin, Qiuyue, Shi, Jinglong, Zhao, Di, Ma, Jingji, Sen Li, Zhang, Libo, Yang, Benqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160514/
https://www.ncbi.nlm.nih.gov/pubmed/37153420
http://dx.doi.org/10.1016/j.heliyon.2023.e15738
_version_ 1785037296944283648
author Wang, Zhenguo
Zhang, Jianhua
Zhang, Anxiaonan
Sun, Yu
Su, Mengwei
You, Hongrui
Zhang, Rongrong
Jin, Qiuyue
Shi, Jinglong
Zhao, Di
Ma, Jingji
Sen Li
Zhang, Libo
Yang, Benqiang
author_facet Wang, Zhenguo
Zhang, Jianhua
Zhang, Anxiaonan
Sun, Yu
Su, Mengwei
You, Hongrui
Zhang, Rongrong
Jin, Qiuyue
Shi, Jinglong
Zhao, Di
Ma, Jingji
Sen Li
Zhang, Libo
Yang, Benqiang
author_sort Wang, Zhenguo
collection PubMed
description OBJECTIVES: This study aimed to ascertain if the radiomics features of epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) based on coronary computed tomography angiography (CCTA) could identify non-ST-segment elevation myocardial infarction (NSTEMI) from unstable angina (UA). MATERIALS AND METHODS: This retrospective case-control study included 108 patients with NSTEMI and 108 controls with UA. All patients were separated into training cohort (n = 116), internal validation cohort 1 (n = 50), and internal validation cohort 2 (n = 50) based on the time order of admission. The internal validation cohort 1 used the same scanner and scan parameters as the training cohort, while the internal validation cohort 2 used different canners and scan parameters than the training cohort. The EAT and PCAT radiomics features selected by maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were adopted to build logistic regression models. Finally, we developed an EAT radiomics model, three vessel-based (right coronary artery [RCA], left anterior descending artery [LAD], and left circumflex artery [LCX]) PCAT radiomics models, and a combined model by combining the three PCAT radiomics models. Discrimination, calibration, and clinical application were employed to assess the performance of all models. RESULTS: Eight radiomics features of EAT, sixteen of RCA-PCAT, fifteen of LAD-PCAT, and eighteen of LCX-PCAT were selected and used to construct radiomics models. The area under the curves (AUCs) of the EAT, RCA-PCAT, LAD-PCAT, LCX-PCAT and the combined models were 0.708 (95% CI: 0.614–0.802), 0.833 (95% CI:0.759–0.906), 0.720 (95% CI:0.628–0.813), 0.713 (95% CI:0.619–0.807), 0.889 (95% CI:0.832–0.946) in the training cohort, 0.693 (95% CI:0.546–0.840), 0.837 (95% CI: 0.729–0.945), 0.766 (95% CI: 0.625–0.907), 0.675 (95% CI: 0.521–0.829), 0.898 (95% CI: 0.802–0.993) in the internal validation cohort 1, and 0.691 (0.535–0.847), 0.822 (0.701–0.944), 0.760 (0.621–0.899), 0.674 (0.517–0.830), 0.866 (0.769–0.963) in the internal validation cohort 2, respectively. CONCLUSION: Compared with the RCA-PCAT radiomics model, the EAT radiomics model had a limited ability to discriminate between NSTEMI and UA. The combination of the three vessel-based PCAT radiomics may have the potential to distinguish between NSTEMI and UA.
format Online
Article
Text
id pubmed-10160514
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101605142023-05-06 The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina Wang, Zhenguo Zhang, Jianhua Zhang, Anxiaonan Sun, Yu Su, Mengwei You, Hongrui Zhang, Rongrong Jin, Qiuyue Shi, Jinglong Zhao, Di Ma, Jingji Sen Li Zhang, Libo Yang, Benqiang Heliyon Research Article OBJECTIVES: This study aimed to ascertain if the radiomics features of epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) based on coronary computed tomography angiography (CCTA) could identify non-ST-segment elevation myocardial infarction (NSTEMI) from unstable angina (UA). MATERIALS AND METHODS: This retrospective case-control study included 108 patients with NSTEMI and 108 controls with UA. All patients were separated into training cohort (n = 116), internal validation cohort 1 (n = 50), and internal validation cohort 2 (n = 50) based on the time order of admission. The internal validation cohort 1 used the same scanner and scan parameters as the training cohort, while the internal validation cohort 2 used different canners and scan parameters than the training cohort. The EAT and PCAT radiomics features selected by maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were adopted to build logistic regression models. Finally, we developed an EAT radiomics model, three vessel-based (right coronary artery [RCA], left anterior descending artery [LAD], and left circumflex artery [LCX]) PCAT radiomics models, and a combined model by combining the three PCAT radiomics models. Discrimination, calibration, and clinical application were employed to assess the performance of all models. RESULTS: Eight radiomics features of EAT, sixteen of RCA-PCAT, fifteen of LAD-PCAT, and eighteen of LCX-PCAT were selected and used to construct radiomics models. The area under the curves (AUCs) of the EAT, RCA-PCAT, LAD-PCAT, LCX-PCAT and the combined models were 0.708 (95% CI: 0.614–0.802), 0.833 (95% CI:0.759–0.906), 0.720 (95% CI:0.628–0.813), 0.713 (95% CI:0.619–0.807), 0.889 (95% CI:0.832–0.946) in the training cohort, 0.693 (95% CI:0.546–0.840), 0.837 (95% CI: 0.729–0.945), 0.766 (95% CI: 0.625–0.907), 0.675 (95% CI: 0.521–0.829), 0.898 (95% CI: 0.802–0.993) in the internal validation cohort 1, and 0.691 (0.535–0.847), 0.822 (0.701–0.944), 0.760 (0.621–0.899), 0.674 (0.517–0.830), 0.866 (0.769–0.963) in the internal validation cohort 2, respectively. CONCLUSION: Compared with the RCA-PCAT radiomics model, the EAT radiomics model had a limited ability to discriminate between NSTEMI and UA. The combination of the three vessel-based PCAT radiomics may have the potential to distinguish between NSTEMI and UA. Elsevier 2023-04-23 /pmc/articles/PMC10160514/ /pubmed/37153420 http://dx.doi.org/10.1016/j.heliyon.2023.e15738 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Wang, Zhenguo
Zhang, Jianhua
Zhang, Anxiaonan
Sun, Yu
Su, Mengwei
You, Hongrui
Zhang, Rongrong
Jin, Qiuyue
Shi, Jinglong
Zhao, Di
Ma, Jingji
Sen Li
Zhang, Libo
Yang, Benqiang
The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title_full The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title_fullStr The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title_full_unstemmed The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title_short The role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-ST-segment elevation myocardial infarction from unstable angina
title_sort role of epicardial and pericoronary adipose tissue radiomics in identifying patients with non-st-segment elevation myocardial infarction from unstable angina
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160514/
https://www.ncbi.nlm.nih.gov/pubmed/37153420
http://dx.doi.org/10.1016/j.heliyon.2023.e15738
work_keys_str_mv AT wangzhenguo theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhangjianhua theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhanganxiaonan theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT sunyu theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT sumengwei theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT youhongrui theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhangrongrong theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT jinqiuyue theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT shijinglong theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhaodi theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT majingji theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT senli theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhanglibo theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT yangbenqiang theroleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT wangzhenguo roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhangjianhua roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhanganxiaonan roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT sunyu roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT sumengwei roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT youhongrui roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhangrongrong roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT jinqiuyue roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT shijinglong roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhaodi roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT majingji roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT senli roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT zhanglibo roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina
AT yangbenqiang roleofepicardialandpericoronaryadiposetissueradiomicsinidentifyingpatientswithnonstsegmentelevationmyocardialinfarctionfromunstableangina