Cargando…
Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy
Objective. Adaptive radiotherapy workflows require images with the quality of computed tomography (CT) for re-calculation and re-optimisation of radiation doses. In this work we aim to improve the quality of on-board cone beam CT (CBCT) images for dose calculation using deep learning. Approach. We p...
Autores principales: | Szmul, Adam, Taylor, Sabrina, Lim, Pei, Cantwell, Jessica, Moreira, Isabel, Zhang, Ying, D’Souza, Derek, Moinuddin, Syed, Gaze, Mark N., Gains, Jennifer, Veiga, Catarina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160738/ https://www.ncbi.nlm.nih.gov/pubmed/36996837 http://dx.doi.org/10.1088/1361-6560/acc921 |
Ejemplares similares
-
Image guidance and interfractional anatomical variation in paediatric abdominal radiotherapy
por: Taylor, Sabrina, et al.
Publicado: (2023) -
Risk of radiation-induced second malignant neoplasms from photon and proton radiotherapy in paediatric abdominal neuroblastoma
por: Taylor, Sophie, et al.
Publicado: (2021) -
Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer
por: Veiga, Catarina, et al.
Publicado: (2021) -
Synthetic CT in Carbon Ion Radiotherapy of the Abdominal Site
por: Parrella, Giovanni, et al.
Publicado: (2023) -
Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy
por: Gao, Liugang, et al.
Publicado: (2021)