Cargando…
2D medical image synthesis using transformer-based denoising diffusion probabilistic model
Objective. Artificial intelligence (AI) methods have gained popularity in medical imaging research. The size and scope of the training image datasets needed for successful AI model deployment does not always have the desired scale. In this paper, we introduce a medical image synthesis framework aime...
Autores principales: | Pan, Shaoyan, Wang, Tonghe, Qiu, Richard L J, Axente, Marian, Chang, Chih-Wei, Peng, Junbo, Patel, Ashish B, Shelton, Joseph, Patel, Sagar A, Roper, Justin, Yang, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160739/ https://www.ncbi.nlm.nih.gov/pubmed/37015231 http://dx.doi.org/10.1088/1361-6560/acca5c |
Ejemplares similares
-
Data-Driven Volumetric Image Generation from Surface Structures using a Patient-Specific Deep Leaning Model
por: Pan, Shaoyan, et al.
Publicado: (2023) -
Denoising diffusion probabilistic models for 3D medical image generation
por: Khader, Firas, et al.
Publicado: (2023) -
Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy
por: Wynne, Jacob F., et al.
Publicado: (2023) -
A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2022)