Cargando…
Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates
Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA) algorithms used for this task are imperfect and misclassify COD for a large proportion of...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society of Tropical Medicine and Hygiene
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160858/ https://www.ncbi.nlm.nih.gov/pubmed/37037438 http://dx.doi.org/10.4269/ajtmh.22-0318 |
_version_ | 1785037370630864896 |
---|---|
author | Fiksel, Jacob Gilbert, Brian Wilson, Emily Kalter, Henry Kante, Almamy Akum, Aveika Blau, Dianna Bassat, Quique Macicame, Ivalda Samo Gudo, Eduardo Black, Robert Zeger, Scott Amouzou, Agbessi Datta, Abhirup |
author_facet | Fiksel, Jacob Gilbert, Brian Wilson, Emily Kalter, Henry Kante, Almamy Akum, Aveika Blau, Dianna Bassat, Quique Macicame, Ivalda Samo Gudo, Eduardo Black, Robert Zeger, Scott Amouzou, Agbessi Datta, Abhirup |
author_sort | Fiksel, Jacob |
collection | PubMed |
description | Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA) algorithms used for this task are imperfect and misclassify COD for a large proportion of deaths. If not accounted for, this misclassification leads to biased estimates of cause-specific mortality fractions (CSMFs), a critical piece in health-policy making. Recent work has demonstrated that the knowledge of the CCVA misclassification rates can be used to calibrate raw VA-based CSMF estimates to account for the misclassification bias. In this manuscript, we review the current practices and issues with raw COD predictions from CCVA algorithms and provide a complete primer on how to use the VA calibration approach with the calibratedVA software to correct for verbal autopsy misclassification bias in cause-specific mortality estimates. We use calibratedVA to obtain CSMFs for child (1–59 months) and neonatal deaths using VA data from the Countrywide Mortality Surveillance for Action project in Mozambique. |
format | Online Article Text |
id | pubmed-10160858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The American Society of Tropical Medicine and Hygiene |
record_format | MEDLINE/PubMed |
spelling | pubmed-101608582023-05-06 Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates Fiksel, Jacob Gilbert, Brian Wilson, Emily Kalter, Henry Kante, Almamy Akum, Aveika Blau, Dianna Bassat, Quique Macicame, Ivalda Samo Gudo, Eduardo Black, Robert Zeger, Scott Amouzou, Agbessi Datta, Abhirup Am J Trop Med Hyg Research Article Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA) algorithms used for this task are imperfect and misclassify COD for a large proportion of deaths. If not accounted for, this misclassification leads to biased estimates of cause-specific mortality fractions (CSMFs), a critical piece in health-policy making. Recent work has demonstrated that the knowledge of the CCVA misclassification rates can be used to calibrate raw VA-based CSMF estimates to account for the misclassification bias. In this manuscript, we review the current practices and issues with raw COD predictions from CCVA algorithms and provide a complete primer on how to use the VA calibration approach with the calibratedVA software to correct for verbal autopsy misclassification bias in cause-specific mortality estimates. We use calibratedVA to obtain CSMFs for child (1–59 months) and neonatal deaths using VA data from the Countrywide Mortality Surveillance for Action project in Mozambique. The American Society of Tropical Medicine and Hygiene 2023-04-10 2023-05 /pmc/articles/PMC10160858/ /pubmed/37037438 http://dx.doi.org/10.4269/ajtmh.22-0318 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fiksel, Jacob Gilbert, Brian Wilson, Emily Kalter, Henry Kante, Almamy Akum, Aveika Blau, Dianna Bassat, Quique Macicame, Ivalda Samo Gudo, Eduardo Black, Robert Zeger, Scott Amouzou, Agbessi Datta, Abhirup Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title | Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title_full | Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title_fullStr | Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title_full_unstemmed | Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title_short | Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates |
title_sort | correcting for verbal autopsy misclassification bias in cause-specific mortality estimates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160858/ https://www.ncbi.nlm.nih.gov/pubmed/37037438 http://dx.doi.org/10.4269/ajtmh.22-0318 |
work_keys_str_mv | AT fikseljacob correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT gilbertbrian correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT wilsonemily correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT kalterhenry correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT kantealmamy correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT akumaveika correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT blaudianna correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT bassatquique correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT macicameivalda correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT samogudoeduardo correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT blackrobert correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT zegerscott correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT amouzouagbessi correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates AT dattaabhirup correctingforverbalautopsymisclassificationbiasincausespecificmortalityestimates |