Cargando…
Deployment of Real-time Natural Language Processing and Deep Learning Clinical Decision Support in the Electronic Health Record: Pipeline Implementation for an Opioid Misuse Screener in Hospitalized Adults
BACKGROUND: The clinical narrative in electronic health records (EHRs) carries valuable information for predictive analytics; however, its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-scale clinical natural language processing (NLP) pipelines have focuse...
Autores principales: | Afshar, Majid, Adelaine, Sabrina, Resnik, Felice, Mundt, Marlon P, Long, John, Leaf, Margaret, Ampian, Theodore, Wills, Graham J, Schnapp, Benjamin, Chao, Michael, Brown, Randy, Joyce, Cara, Sharma, Brihat, Dligach, Dmitriy, Burnside, Elizabeth S, Mahoney, Jane, Churpek, Matthew M, Patterson, Brian W, Liao, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160938/ https://www.ncbi.nlm.nih.gov/pubmed/37079367 http://dx.doi.org/10.2196/44977 |
Ejemplares similares
-
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
por: Sharma, Brihat, et al.
Publicado: (2020) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022) -
Subtypes in patients with opioid misuse: A prognostic enrichment strategy using electronic health record data in hospitalized patients
por: Afshar, Majid, et al.
Publicado: (2019) -
Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups
por: Thompson, Hale M, et al.
Publicado: (2021) -
External validation of an opioid misuse machine learning classifier in hospitalized adult patients
por: Afshar, Majid, et al.
Publicado: (2021)