Cargando…

Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels

Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale‐structu...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Kaiyue, Zhu, Ying, Zheng, Zihao, Cheng, Wanke, Zi, Yifei, Zeng, Suqing, Zhao, Dawei, Yu, Haipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161113/
https://www.ncbi.nlm.nih.gov/pubmed/36905237
http://dx.doi.org/10.1002/advs.202207233
_version_ 1785037424018063360
author Cao, Kaiyue
Zhu, Ying
Zheng, Zihao
Cheng, Wanke
Zi, Yifei
Zeng, Suqing
Zhao, Dawei
Yu, Haipeng
author_facet Cao, Kaiyue
Zhu, Ying
Zheng, Zihao
Cheng, Wanke
Zi, Yifei
Zeng, Suqing
Zhao, Dawei
Yu, Haipeng
author_sort Cao, Kaiyue
collection PubMed
description Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale‐structured ionogel (M‐gel) via ionothermal‐stimulated silk fiber splitting and moderate molecularization in the cellulose‐ions matrix is reported. The produced M‐gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M‐gel, the resultant biomimetic M‐gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m(−3), and instantaneous impact resistance of 3.07 kJ m(−1), which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load‐bearing materials requiring greater impact resistance.
format Online
Article
Text
id pubmed-10161113
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101611132023-05-06 Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels Cao, Kaiyue Zhu, Ying Zheng, Zihao Cheng, Wanke Zi, Yifei Zeng, Suqing Zhao, Dawei Yu, Haipeng Adv Sci (Weinh) Research Articles Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale‐structured ionogel (M‐gel) via ionothermal‐stimulated silk fiber splitting and moderate molecularization in the cellulose‐ions matrix is reported. The produced M‐gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M‐gel, the resultant biomimetic M‐gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m(−3), and instantaneous impact resistance of 3.07 kJ m(−1), which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load‐bearing materials requiring greater impact resistance. John Wiley and Sons Inc. 2023-03-11 /pmc/articles/PMC10161113/ /pubmed/36905237 http://dx.doi.org/10.1002/advs.202207233 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Cao, Kaiyue
Zhu, Ying
Zheng, Zihao
Cheng, Wanke
Zi, Yifei
Zeng, Suqing
Zhao, Dawei
Yu, Haipeng
Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title_full Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title_fullStr Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title_full_unstemmed Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title_short Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels
title_sort bio‐inspired multiscale design for strong and tough biological ionogels
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161113/
https://www.ncbi.nlm.nih.gov/pubmed/36905237
http://dx.doi.org/10.1002/advs.202207233
work_keys_str_mv AT caokaiyue bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT zhuying bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT zhengzihao bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT chengwanke bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT ziyifei bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT zengsuqing bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT zhaodawei bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels
AT yuhaipeng bioinspiredmultiscaledesignforstrongandtoughbiologicalionogels