Cargando…
Spot delivery error predictions for intensity modulated proton therapy using robustness analysis with machine learning
The purpose of this work is to assess the robustness of treatment plans when spot delivery errors were predicted with a machine learning (ML) model for intensity modulated proton therapy (IMPT). Over 6000 machine log files from delivered IMPT treatment plans were included in this study. From these l...
Autores principales: | Newpower, Mark A., Chiang, Bing‐Hao, Ahmad, Salahuddin, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161119/ https://www.ncbi.nlm.nih.gov/pubmed/36748663 http://dx.doi.org/10.1002/acm2.13911 |
Ejemplares similares
-
Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton‐based stereotactic body radiation therapy (SBRT) lung plans
por: Rana, Suresh, et al.
Publicado: (2021) -
Treatment planning of total marrow irradiation with intensity-modulated spot-scanning proton therapy
por: Zuro, Darren M., et al.
Publicado: (2022) -
A fast robust optimizer for intensity modulated proton therapy using GPU
por: Xu, Yao, et al.
Publicado: (2020) -
Prediction of the output factor using machine and deep learning approach in uniform scanning proton therapy
por: Grewal, Hardev S., et al.
Publicado: (2020) -
Dosimetric comparison of distal esophageal carcinoma plans for patients treated with small‐spot intensity‐modulated proton versus volumetric‐modulated arc therapies
por: Liu, Chenbin, et al.
Publicado: (2019)